Theo công thức tính thể tích chóp có
Chọn đáp án B.
Theo công thức tính thể tích chóp có
Chọn đáp án B.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Gọi I là trung điểm của AB, hai mặt phẳng (SIC) và (SID) cùng vuông góc với đáy. Biết AD=AB=2a, BC=a, khoảng cách từ I đến (SCD) là 3 a 2 4 . Thể tích khối chóp S.ABCD là
A . a 3
B . a 3 3
C . 3 a 3
D . a 3 3 2
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB = BC = a; AD = 2a; S A ⊥ A B C D . Góc giữa mặt phẳng ( SCD ) và ( ABCD ) bằng 45 o . Gọi M là trung điểm AD. Tính theo a thể tích V khối chóp S.MCD và khoảng cách d giữa hai đường thẳng SM và BD
A. V = a 3 2 6 d = a 22 11
B. V = a 3 6 6 d = a 22 11
C. V = a 3 2 6 d = a 22 22
D. V = a 3 6 6 d = a 22 22
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD). Biết góc tạo bởi mặt phẳng (SCD) và đáy bằng 30 0 và khoảng cách từ A tới mặt phẳng (SCD) bằng a. Khi đó thể tích V của khối chóp S.ABCD bằng bao nhiêu?
A. 8 3 a 3 3 .
B. 2 3 a 3 3 .
C. 4 3 a 3 9 .
D. 8 3 a 3 9 .
Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật với A B = 6 , A D = 3 , A ' C = 3 và mặt phẳng A A ' C ' C vuông góc với mặt đáy. Biết hai mặt phẳng tạo với nhau góc thỏa mãn tan α = 3 4 . Thể tích khối lăng trụ ABCD.A’B’C’D’ bằng
A. V = 8
B. V = 12
C. V = 10
D. V = 6
Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB=2a, AD=BC=CD=a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng 2 a 15 5 , tính theo a thể tích V của khối chóp
A. V = 3 a 3 3 4
B. V = 3 a 3 4
C. V = 3 a 3 5 4
D. V = 3 a 3 2 4
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .
Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và B, I là trung điểm của AB, có (SIC) và (SID) cùng vuông góc với đáy. Biết A D = A B = 2 a , B C = a , khoảng cách từ I đến (SCD) là 3 a 2 4 . Khi đó thể tích khối chóp S.ABCD là:
A. a 3 .
B. a 3 3 .
C. 3 a 3 .
D. a 3 3 2 .
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O. Khoảng cách từ điểm O đến mặt phẳng (SCD) bằng a 14 7 và góc giữa đường thẳng SB với mặt đáy bằng 60°. Tính thể tích V của khối chóp S.ABC theo a.
A. V = 3 a 3 2 2
B. V = 3 a 3 2 4
C. V = 3 a 3 2 16
D. V = 9 a 3 2 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết SA = SB; SC = SD và hai mặt phẳng (SAB), (SCD) vuông góc với nhau. Tổng diện tích của hai tam giác SAB, SCD, bằng 17 a 2 26 . Tính thể tích V của khối chóp S.ABCD.
A. V = 2 a 3 13 .
B. V = 5 a 3 26 .
C. V = 20 a 3 169 .
D. V = 22 a 3 169 .