Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = 2 , A D = 2 3 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M, N, P lần lượt là trung điểm của các cạnh SA, CD, CB. Tính côsin góc tạo bởi mặt phẳng (MNP) và (SCD).
A. 2 435 145 .
B. 11 145 145 .
C. 2 870 145 .
D. 3 145 145 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, A D = 2 a , cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng




Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và (SAC). Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và (SAC). Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ ( A B C D ) , S A = a 6 . Gọi α là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau?

A. α = 30 o
B. cos α = 3 3
C. α = 45 o
D. α = 60 o
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ ( A B C D ) . Gọi α là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau?





Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AB//CD). Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sau đây đúng?
![]()



Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB=a, AD=a 3 . Cạnh bên SA=a 2 và vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC)

![]()
![]()
![]()
![]()
Cho khối chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD). Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 o . Gọi M, N lần lượt là trung điểm AB, AD. Tính thể tích khối chóp S. CDMN theo a.
A. 5 a 3 8
B. a 3 8
C. 5 a 3 24
D. a 3 3