Cho hình chóp S.ABC có SA=a, SB=b, SC=c. Một mặt phẳng (α) đi qua trọng tâm của tam giác ABC, cắt các cạnh SA, SB, SC lần lượt tại A’, B’, C’. Tìm giá trị nhỏ nhất của 1 S A ' 2 + 1 S B ' 2 + 1 S C ' 2
A. 3 a 2 + b 2 + c 2 .
B. 2 a 2 + b 2 + c 2 .
C. 2 a 2 + b 2 + c 2 .
D. 9 a 2 + b 2 + c 2 .
Cho hình chóp S.ABC có S A = S B = S C = a , A S B ^ = B S C ^ = C S A ^ = α . Gọi (b) là mặt phẳng đi qua A và các trung điểm của SB, SC. Tính diện tích thiết diện S của hình chóp cắt bởi mặt phẳng (b).
A. S = a 2 2 7 cos 2 α − 16 cos α + 9
B. S = a 2 2 7 cos 2 α − 6 cos α + 9
C. S = a 2 8 7 cos 2 α − 6 cos α + 9
D. S = a 2 8 7 cos 2 α − 16 cos α + 9
Cho khối chóp S. ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a, tam giác BCD cân tại C và B C D ^ = 120 0 , S A ⊥ A B C D và SA=a. Mặt phẳng (P) đi qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Tính thể tích khối chóp S. AMNP.
A. a 3 3 42
B. 2 a 3 3 21
C. a 3 3 14
D. a 3 3 12
Cho hình chóp đều S.ABC có AB = a, A S B ^ = 30 ° . Lấy các điểm B', C' lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB'C' nhỏ nhất. Tính chu vi đó.
A. ( 3 -1)a
B. 3 a
C. a 3 + 1
D. (1+ 3 )a
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a 2 . Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Gọi V là thể tích hình chóp S.ABC, V’ là thể tích hình chóp S.A’B’C. Tính tỉ số k = V'/V.
A. k = 1 3
B. k = 2 4
C. k = 4 9
D. k = 2 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, B C = a 3 , SA = a. Một mặt phẳng (α) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a
A. V S . A H K = a 3 3 20
B. V S . A H K = a 3 3 30
C. V S . A H K = a 3 3 60
D. V S . A H K = a 3 3 90
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, BC = a 3 , SA = a. Một mặt phẳng ( α ) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a 2 . Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Tính thể tích V của hình chóp S.A’B’C.
A. V = 14 54 a 3
B. V = 14 64 a 3
C. V = 14 49 a 3
D. V = 4 61 a 3