cho 2 hàm số : y=3x và y=-x+3
a. vẽ đths trên cùng 1 mặt phẳng toạ độ
b. xác định hs y=ax+b (a khác 0) bt rằng đths đó cắt đt y=-x+2 tại 1 điểm trên trục tung và đi qua điêm A(1;3)
c. tìm điểm thuộc đt y=-x+2 có hoành độ gấp 3 tung độ
câu 1: a) vẽ parabol (p): y= 1/2x^2 và đường thẳng (d): y=3/2x-1 trên cùng 1 mặt phẳng toạ độ
b) xác định toạ độ giao điểm của (p) và (d) bằng phép toán
câu 2: a) vẽ đồ thị hàm số (p): y=x^2 và (d): Y=-x+2 trên cùng 1 hệ trục toạ độ
b) xác định toạ độ giao điểm của (p) và (d)
câu 3: cho hai hàm số y=x^2 và y=-2x+3
a) vẽ các đồ thị của hai hàm số này trên cùng một hệ trục toạ độ
b) tìm toạ độ giao điểm của hai đồ thị đó
Cho hàm số y=3/2 x^2 (P) và y=x+1/2 (d) a) vẽ đồ thị (P) và (d) trên cùng một mặt phẳng toạ độ. b) tìm toạ độ giao điểm của (P) và (d). c) viết phương trình đường thẳng cắt (P) tại 2 điểm có hoành độ là -4 và 2.
Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d): y = 2mx - m2 + 1 và parabol (P): y = x2
a) Tìm toạ độ hai giao điểm của (d) và (P) khi m = 2.
b) Tìm m để đường thẳng (d) cắt (P) tại 2 điểm có hoành độ x1, x2 thoả mãn: 2y1 + 4mx2 - 2m2 - 3 < 0
Trên cùng mặt phẳng toạ độ , đồ thị hàm số y= 3/2x -2 và y=-1/2x+2 cắt nhau tại điểm có toạ độ là
Câu 3: Cho các hàm số \(y=2x+5\) và \(y=-x+2\)
a. Vẽ đồ thị của hai hàm số đã cho trên cùng một mặt phẳng toạ độ Oxy.
b. Dựa vào hình vẽ, xác định toạ độ giao điểm A của hai đồ thị hàm số.
c. Hai đồ thị của hai hàm số đã cho cắt trục hoành tại các điểm B và C. Tính diện tích tam giác ABC
Cho hàm số y = 2x có đồ thị là (D1) và hàm số y = 2 /1 x – 3 có đồ thị là (D2). a) Vẽ (D1), (D2) trên cùng một mặt phẳng toạ độ. b) Tìm toạ độ giao điểm của (D1) và (D2) bằng phép tính
a, Vẽ đồ thị của hai hàm sso sau trên cùng 1 mặt phẳng toạ độ Y= 1/3x + 2 (d¹) Y= 5 - 3x (d²) b, gọi C là giao điểm của hai đuờng thẳng d¹,d² hãy tìm toạ độ điểm C
Trong mặt phẳng toạ độ cho parabol y=x^2 và đường thẳng y=2mx-m^2+m-1
.
a. Tìm toạ độ giao điểm của (P) và (d) khi .
b. Tìm để (P) cắt (d) tại hai điểm phân biệt.
c. Tìm để (P) và (d) có một điểm chung duy nhất.
d. Tìm để (P) cắt (d) tại điểm có hoành độ bằng 2.