Kẻ \(OP⊥AB\)
\(OQ⊥BC\)
Xét tứ giác \(PBQO\) có 3 góc vuông nên là hính chữ nhật. (HCN)
HCN \(PBQO\) có BO là đường phân giác của góc B nên là hình vuông.
\(\Rightarrow OP=OQ\) và \(\widehat{POQ}=90^o\)
\(\Rightarrow\widehat{POQ}=\widehat{MON}\left(=90^o\right)\)
\(\Rightarrow\widehat{POQ}-\widehat{PON}=\widehat{MON}-\widehat{PON}\)
\(\Rightarrow\widehat{NOQ}=\widehat{MOP}\)
Từ đó bạn tự chứng minh \(\Delta NOQ=\Delta MOP\left(g.c.g\right)\)
\(\Rightarrow S_{NOQ}=S_{MOP}\)
\(\Rightarrow S_{NOQ}+S_{OPBN}=S_{MOP}+S_{OPBN}\)
\(\Rightarrow S_{OMBN}=S_{PBQO}\)
\(S_{PBQO}=\frac{BO.QP}{2}=BO^2=\left(\frac{BD}{2}\right)^2=6^2=36\left(cm^2\right)\)
Vậy ...