a)Cho hình vuông ABCD và một điểm E bất kì nằm giữa hai điểm A, B. Trên tia đối của tia CB, lấy một điểm F sao cho CF = AE.
1.Tính góc EDF.
2.Gọi G là điểm đối xứng với D qua trung điểm I của đoạn EF.Tứ giác DEGF là hình gì?Vì sao ?
3.Chứng minh ba đường thẳng AC, DG, EF đồng quy tại một điểm.
b)Cho hình vuông ABCD, trên cạnh AB lấy điểm E tuỳ ý. Tia phân giác của góc CDE cắt BC ở K. Chứng minh rằng AE + CK = DE.v
Cho hình vuông ABCD , E là điểm nằm trên cạnh DC, F là điểm nằm trên tia đối BC sao cho BF = DE .
a) Chứng minh rằng : Tam giác AEF vuông cân
b) Gọi I là trung điểm của EF . Chứng minh I thuộc BC
c) Lấy K đối xứng với A qua I . CMR: tứ giác AEKF là hình vuông
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 10cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm. Kẻ DE vuông góc AB ( E thuộc BC). Gọi F là hình chiếu của E trên AC.
1.Cm DF = AE
2. Trên tia FC lấy Q sao cho FQ = DE. Gọi Mlaf giao điểm của DQ và EF. Gọi O là giao điểm AE và DF . Cm OM // AC.
3. Vẽ G sao cho E và C đối xứng với nhau qua G . tính S tam giác OEG
cho hình vuông ABCD . Trên AD lấy điểm F .Trên cạnh DC lấy điểm E . Trên AB lấy điểm G sao cho AF=DE=AG . Gọi I là giao điểm của AE và BF . cmr IG vuông góc với IC
cho hình vuông ABCD . Trên AD lấy điểm F .Trên cạnh DC lấy điểm E . Trên AB lấy điểm G sao cho AF=DE=AG . Gọi I là giao điểm của AE và BF . cmr IG vuông góc với IC
cho hình vuông ABCD . Trên AD lấy điểm F .Trên cạnh DC lấy điểm E . Trên AB lấy điểm G sao cho AF=DE=AG . Gọi I là giao điểm của AE và BF . cmr IG vuông góc với IC
cho hình vuông ABCD . Trên AD lấy điểm F .Trên cạnh DC lấy điểm E . Trên AB lấy điểm G sao cho AF=DE=AG . Gọi I là giao điểm của AE và BF . cmr IG vuông góc với IC
cho hình vuông ABCD . Trên AD lấy điểm F .Trên cạnh DC lấy điểm E . Trên AB lấy điểm G sao cho AF=DE=AG . Gọi I là giao điểm của AE và BF . cmr IG vuông góc với IC
cho hình vuông ABCD . Trên AD lấy điểm F .Trên cạnh DC lấy điểm E . Trên AB lấy điểm G sao cho AF=DE=AG . Gọi I là giao điểm của AE và BF . cmr IG vuông góc với IC