a: góc BHD=góc BAD=góc BCD=90 độ
=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD
=>AHCD nội tiếp
Tâm là trung điểm của BD
b: Xét ΔBDK có
BC,DH là đường cao
BC cắt DH tại M
=>M là trực tâm
=>KM vuông góc DB
a: góc BHD=góc BAD=góc BCD=90 độ
=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD
=>AHCD nội tiếp
Tâm là trung điểm của BD
b: Xét ΔBDK có
BC,DH là đường cao
BC cắt DH tại M
=>M là trực tâm
=>KM vuông góc DB
cho hình vuông ABCD lấy điểm M bất kì trên canh BC(M khác B,C) qua B kẻ đường thẳng vuông góc với đthẳng DM tạiH kéo dài BH cắt DC tại K
chứng minh BHCD nội tiếp đường tròn . xác định tâm I củ đường tròn đó
chứng minh KC.KD=KH.KB
chứng minh KM vuông vs DB
cho hình vuông ABCD điểm M thuộc BC. qua B kẻ đường thẳng vuông góc với DM. Đường thẳng này cắt DM và DC tại H và K.
a. chứng minh Các tứ giác ABHD,BHCD nội tiếp đường tròn
b.Tính góc CHK
cho hình vuông abcd canh m thuộc bc (m khác b m khác c) qua b kẻ đường thẳng vuông góc với tia dm cắt các đường thẳng dm dc theo thứ tự tại h và k a chứng minh các tứ giác abhd và bdch nội tiếp b tính góc chk
cho đường tròn (o) đường kính AB và đường thẳng d là tiếp tuyến của đường tròn kẻ từ B. trên d lấy hai điểm nằm khác phía với điểm B và BC<BD.AC cắt (o) tại E, AD cắt (o) tại F.(E,F khác A) đường thẳng kẻ qua A vuông góc với EF cắt CD tại M.
a) chứng minh tứ giác CEFD nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác CEFD. chứng minh IM vuông góc với CD.
c) gọi P là giao điểm của FE và CD. PA cắt đường tròn (o) tại K (K khác A) c/m K,B,I thẳng hàng
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H.
a) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax,By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M,I,H thẳng hàng.
b) Vẽ đường tròn tâm (O') nội tiếp tam giác AMB tiếp xúc với AB ở K. Chứng minh SAMB= AK.KB
Cho điểm M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N.
a) Chứng minh DC = DN
b) Chứng minh AC là tiếp tuyến của đường tròn tâm O
c) Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm MH. Chứng minh B, C, I thẳng hàng.
d) Qua O kẻ đường vuông góc với AB, cắt (O) tại K (K và M nằm khác phía với đường thẳng AB). Tìm vị trí của M để diện tích tam giác MHK lớn nhất.
từ một điểm M nằm ngoài đường tròn tâm O , vẽ 2 tiếp tuyến MA , MB với đường tròn (A,B là 2 tiếp điểm ).Trên dây AB lấy điểm H (H khác A và B).Qua H vẽ đường thẳng vuông góc với OH cắt đường thẳng MA ở E, cắt đoạn thẳng MB tại F
1. chứng minh tứ giác có 4 đỉnh O,H,A,E là tứ giác nội tiếp.
2.chứng minh tam giác OEF cân.
3.kẻ OI vuông góc với AB ( I THUỘC AB).chứng minh OI.OF=OB.OH
Xem giúp mình ý d) bài này với ạ :
Cho hình vuông ABCD, điểm M thuộc cạnh BC ( M khác B,C). Qua B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt các đường thẳng DM và DC theo thứ thự tại H và K.
a) Chứng minh: Các tứ giác ABHD, BHCD nội tiếp đường tròn
b) Tính góc CHK
c) Chứng minh: KH.KB = KC.KD
d) Đường thẳng AM cắt đường thẳng DC tại N. Chứng minh :
\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho đường tròn tâm (O) đường kính MC. Qua điểm I tùy ý trên đoạn OM (I khác O, M) vẽ dây DE của (O). Đường thẳng MD cắt đường thắng CE tại B và gọi A là hình chiếu vuông góc của B trên đường thẳng MC. Đường thẳng AD cắt đường tròn (O) tại S (S khác D).
1. Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA vuông góc với SE.
2. Chứng minh các đường thẳng BA, EM, CD cắt nhau tại một điểm.
3. Chứng minh M là tâm đường tròn nội tiếp tam giác ADE.
4. Giả sử A, O đối xứng với nhau qua điểm M và đường thẳng AE cắt (O) tại điểm F.(F nằm giữa A và E). Nối CF cắt ME tại P. Chứng minh MP = OP.