Cho hình vuông ABCD cạnh a. Gọi M là một điểm nằm giữa B và C. Tia AM cắt đường thẳng CD tại N. Chứng minh giá trị biểu thức P=\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\) luôn không đổi khi M di chuyển trên B và C
https://hoc24.vn/cau-hoi/cho-hinh-vuong-abcd-goi-i-la-1-diem-nam-giua-a-va-d-tia-di-cat-tia-cd-o-k-ke-dx-vuong-goc-di-cat-tia-bc-o-ea-chung-minh-tam-giac-die-la-mot-tam-gi.1718306148066
ai giúp mik câu này với
Cho hình vuông ABCD cạnh a. Gọi I là một điểm nằm trên cạnh AB. Tia DI cắt tia BC tại K. Tính \(\frac{1}{DI^2+DK^2}\)
Cho hình vuông ABCD có I là điểm nằm giữa A và B. Tia ID và tía CB cắt nhau tại K Kẻ đg thẳng qua D vuông góc với DI cắt BC tại M C/m rằng
a) tam giác IDM cân
b) tổng \(\frac{1}{DK^2}+\frac{1}{DI^2}\)ko đổi khi I thay đổi trên AB
cho hình vuông ABCD , cạnh có độ dài bằng a . E là 1 điểm di động trên CD(E khác C,D).AE cắt BC tại F ,kẻ đường thẳng vuông góc với AE tại A cắt CD tại K
a,Chứng minh:1/AF^2+1/AE^2=không đổi
b,chứng minh : cosAKE=sinEKF.cosEFK+sinEFK.cosEKF
Cho hình vuông ABCD có cạnh bằng x. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thẳng này cắt đường thẳng AB tại L. Chứng minh rằng:
a) Tam giác DKL là một tam giác cân;
b)IL\(\ge\)2x
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh1) tứ giác AMBD nội tiếp2) Ba điểm M,Q,E thẳng hàng
Cho hình vuông ABCD có cạnh bằng a tâm O, hai điểm di động M,N lần lượt trên hai cạnh BC, CD sao cho góc MAN= 45 độ. Gọi H, K lần lượt là hình chiếu của B, D trên AM, AN
a). Chứng minh tg ABHO, ADKO nội tiếp khi BM= DN= \(\dfrac{a}{3}\)
b) Chứng minh \(\dfrac{AH}{AN}=\dfrac{AK}{AM}\)
Cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). Kẻ DK vuông góc với EF tại K (K thuộc EF). Gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF.
a. Chứng minh tứ giác EMNF nội tiếp
b. Chứng minh DM.DE = DN.DF
c. Tìm vị trí của điểm D sao cho bán kính đường tròn ngoại tiếp tam giác EFM đạt giá trị lớn nhất.