Đặt DE = x thì CE = 1 - x thì CF = CE = 1 - x , AE 2 = x2 + 1
Từ CE2 + CF2 = EF2 , ta có 2 ( 1 - x ) 2 = x2 + 1.
Đưa về phương trình
x2 - 4x + 4 = 3 <=> (x-2)2 = 3 <=> x = 2 +- \(\sqrt{3}\)
Do x < 1 nên ta chọn x = 2 -\(\sqrt{3}\)
EF = ( 1 - x ) \(\sqrt{2}\)= (\(\sqrt{3}\)- 1 )\(\sqrt{2}\) = \(\sqrt{6}\)- \(\sqrt{2}\)(dm)
Có: \(\Delta ADE=\Delta ABF=CF=CE\)
Lại có: \(\hept{\begin{cases}2CF^2=EF^2\\\left(1-CF\right)^1+1=EF^2\end{cases}}\)
\(\Rightarrow EF\)