Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Gọi E là giao điểm CM và DN
a, Tính số đo góc CEN
b, Chứng minh A, D, E, M cùng thuộc một đường tròn
c, Xác định tâm của đường tròn đi qua ba điểm B, D, E
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Gọi E là giao điểm CM và DN
a) Tính số đo góc CEN
b) Chứng minh A,D,E,M thuộc 1 đường tròn
c) Xác định tâm của đường tròn đi qua 3 điểm B,D,E
Cho đường tròn tâm O đường kính AB. Trên bán kính OA, lấy điểm C tùy ý (C khác O và A). Vẽ đường tròn tâm J đường kính AC. Gọi I là trung điểm BC. Qua I vẽ dây cung MN vuông góc BC; AM cắt đường tròn tâm J tại E.
a/ CM CIME nội tiếp.
b/ CM BMCN là hình thoi. Từ đó suy ra ba điểm E, C, N cùng thuộc một đường thẳng.
c/ CM IE là tiếp tuyến của đường tròn tâm J.
d/ Đường tròn tâm M bán kính MI cắt đường tròn tâm O tại P và Q, Gọi H là giao điểm của PQ và MN. Tính tỉ số HM/HN
Bài 6. Cho hình vuông ABCD . Gọi M N, lần lượt là trung điểm của AB BC , . Gọi E là giao điểm CM và DN . a) Tính số đo của CEN ; b) Chứng minh các điểm A D E M , , , cùng thuộc một đường tròn; ( ko dc su dung tinh chat cua tam giac noi tiep, ngoai tiep)
Bài 6. Cho hình vuông ABCD . Gọi M N, lần lượt là trung điểm của AB BC , . Gọi E là giao điểm CM và DN . a) Tính số đo của CEN ; b) Chứng minh các điểm A D E M , , , cùng thuộc một đường tròn;(khong dc su dung cac tinh chat cua tam giac noi tiep, ngoai tiep)
Cho đường tròn tâm O bán kính R. hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung nhỏ BC, vẽ tiếp tuyến tại E của đường tròn O cắt AB tại M. CE cắt AB tại K. I là giao điểm của ED với AB.
a/ chứng minh EA là tia phân giác góc CED
b/ chứng minh 4 điểm O;E;K;D thuộc 1 đường tròn, xác định tâm đường tròn qua 4 điểm đó.
c/ Gọi H là trung điểm DK, chứng minh tứ giác HMIO nội tiếp.
d/ chứng minh AI.BK=IK.IB
( GIÚP MÌNH CÂU D NHÉ :)
bài 1: cho nửa đường tròn (O; R), đường kính AB. Từ điểm M bất kỳ thuộc nửa đường tròn, kẻ MN vuông góc với AB (N ∈ AB; M khác A; M khác B). từ N kẻ ND và NE lần lượt vuông góc với AM và BM (D ∈ AM, E ∈ BM).
a, Tứ giác DMEN là hình gì? Chứng minh.
b, Chứng minh DM . AM = EM . BM
c, Gọi O’ là tâm đường tròn đường kính NB. chứng minh DE là tiếp tuyến của đường tròn (O’).
d, Gọi I là điểm đối xứng với N qua D; gọi K là điểm đối xứng với N qua E. Xác định vị trí của M trên nửa đường tròn (O) để tứ giác AIKB có chu vi lớn nhất.
Cho tam giác ABC (AB< AC) có ba góc nhọn . Đường tròn tâm O đường kính BC cắt cạnh. AC,AB lần lượt tại D,E. Gọi H là giao điểm của BD và CE ; F là giao điểm của AH và BC
a) chứng mình AF vuông góc BC và góc AFD = góc ACE
b) Gọi M là trung điểm của AH . Chứng mình rằng MD vuông góc với OD và 5 điểm M,D, O,E,F cùng thuộc một đường tròn
c) gọi K là giao điểm của AH và DE. Chứng minh MD^2= MK.MF và K là trực tâm của tam giác ABC
d)chứng minh 2/FK= 1/FH+1/FA