Đáp án C
V A B C D = 1 3 . 3 4 .1 = 3 12
V D M N P V D A B C = D M D A . D N D B . D P D C = 1 8 ⇒ V D M N P = 3 96
Đáp án C
V A B C D = 1 3 . 3 4 .1 = 3 12
V D M N P V D A B C = D M D A . D N D B . D P D C = 1 8 ⇒ V D M N P = 3 96
Trong không gian Oxyz, cho tứ diện ABCD có A (1;1;1), B (2;0;2), C ( -1;-1;0) và D ( 0;3;4). Trên các cạnh AB , AC, AD lần lượt lấy các điểm B', C', D' sao cho thể tích của khối tứ diện AB'C'D' nhỏ nhất và A B A B ' + A C A C ' + A D A D ' = 4 . Tìm phương trình của mặt phẳng (B’C’D’)
A. 16 x + 40 y - 44 z + 39 = 0
B. 16 x - 40 y - 44 z + 39 = 0
C. 16 x + 40 y + 44 z + 39 = 0
D. 16 x + 40 y - 44 z - 39 = 0
Cho tứ diện ABCD có ABCD và D A ⊥ A B C ; DA = 1 là tam giác đều cạnh bằng 1. Trên ba cạnh DA, DB, DC lấy 3 điểm M, N, P mà D M D A = 1 2 ; D N D B = 1 3 ; D P D C = 3 4 Tính thể tích khối tứ diện MNPD
A. V = 3 12
B. V = 2 12
C. V = 3 96
D. V = 2 96
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1) , B(2;0;2), C(-1; -1; 0), D(0;3;4) Trên các cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' thỏa: A B A B ' + A C A C ' + A D A D ' = 4 Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?
A. 16x+40y+44z-39=0
B. 16x+40y-44z+39=0
C. 16x-40y-44z+39=0
D. 16x-40y-44z-39=0
Cho A(2;1;-1), B(3,0,1), C(2;-1;3) và D nằm trên Oy và thể tích tứ diện ABCD bằng 3. Tọa độ của D là
A. D(0;5;0)
B. D(0;3;0)
C. C(0;-4;0) hoặc D(0;5;0)
D. (0;-2;0)
Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD với A(3;5;-1),B(0;-1;8),C(-1;-7;3),D(1;0;2) và điểm M(1;1;5). Mặt phẳng (P):ax+by+cz-14=0 qua hai điểm D,M cắt cạnh AC và (P) chia khối tứ diện ABCD thành hai phần có thể tích bằng nhau. Giá trị của biểu thức a+b+c bằng
A. 10
B. 16
C. 8
D. -36
Cho hình chóp tứ giác S . A B C D có thể tích bằng V. Lấy điểm A’ trên cạnh SA sao cho S A ' = 1 3 S A . Một mặt phẳng qua A’ và song song với đáy của hình chóp cắt các cạnh S B , S C , S D lần lượt tại B ' , C ' , D ' . Khi đó thể tích của khối chóp S . A ' B ' C ' D ' tính theo a bằng
A. V 3
B. V 9
C. V 27
D. V 81
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có tọa độ các điểm A(1;1;1), B(2;0;2), C(-1;-1;0), D(0;3;4). Trên các cạnh AB, AC, ADlần lượt lấy các điểm B’,C’,D’ sao cho A B A B ' + A C A C ' + A D A D ' = 4 và tứ diện AB’C’D’ có thể tích nhỏ nhất. Phương trình mặt phẳng (B’C’D’) là
A. 16x-40y-44z-39=0.
B. 16x-40y-44z+39=0.
C. 16x+40y+44z-39=0.
D. 16x+40y-44z+39=0.