Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h. Một hình trụ có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó.
Cho hình lăng trụ đứng ABC. A 1 B 1 C 1 có tất cả các cạnh đều bằng nhau và bằng a. Các đáy của lăng trụ nội tiếp các đường tròn đáy của khối trụ (H). Thể tích của khối trụ là:
A. πa 3 3 3
B. πa 3 3
C. πa 3 9
D. 3 πa 3 4
Cho hình trụ có đường cao h và bán kính đáy là r. Trong các khối lăng trụ tứ giác nội tiếp hình trụ thì khối lăng trụ có thể tích lớn nhất bằng:
A. h r 2
B. 2h r 2
C. 3h r 2
D. 4h r 2
Cho hình lăng trụ đều có độ dài cạnh đáy bằng a. Chiều cao của hình lăng trụ bằng h, diện tích một mặt đáy bằng S. Tổng khoảng cách từ một điểm trong của hình lăng trụ đến tất cả các mặt của hình lăng trụ bằng
Một hình trụ có bán kính đáy bằng R và thiết diện qua trục là hình vuông. Tính thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ.
Cho hình trụ có bán kính đáy bằng a và chiều cao bằng h. Tính thể tích V của khối lăng trụ tam giác đều nội tiếp hình trụ đã cho
Một hình trụ có bán kính đáy bằng R và thiết diện đi qua trục là hình vuông. Tính thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ.
Một hình trụ có bán kính đáy bằng R và thiết diện đi qua trục là hình vuông. Tính thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ.
Cho hình lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng b. Tính thể tích khối cầu giới hạn bởi mặt cầu đi qua các đỉnh của hình lăng trụ.