Cho khối trụ có hai đáy là hai hình tròn (O;R), (O;R’), OO’ = 4R. Trên đường tròn (O;R) lấy hai điểm A, B sao cho AB= R 3 . Mặt phẳng (P) đi qua A, B cắt OO’ và tạo với đáy một góc bằng 60 0 . (P) cắt khối trụ theo thiết diện là một phần của elip. Diện tích thiết diện đó bằng:
Hình trụ có bán kính đáy r. Gọi O và O' là tâm của hai đường tròn đáy, với OO’ = 2r .Một mặt cầu (S ) tiếp xúc với hai đáy hình trụ tại O và O'. Gọi VC và VT lần lượt là thể tích khối cầu và khối trụ tương ứng. Khi đó V C V T bằng:
A. 1 2
B. 3 4
C. 2 3
D. 3 5
Cho hình chóp nón N có bán kính đáy bằng R, đường cao SO. Một mặt phẳng (P) cố định vuông góc với SO tại O’ và cắt khối nón theo hình nón có bán kính R’. Mặt phẳng (Q) thay đổi, vuông góc với SO tại điểm O 1 ( O 1 nằm giữa O và O') cắt khối nón theo thiết diện là hình tròn có bán kính x.Tính xtheo R và R’ để (Q) chia phần khối nón nằm giữa (P) và đáy hình nón thành hai phần có thể tích bằng nhau
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính R và chiều cao là R 2 . Trên hai đường tròn (O) và (O') lần lượt lấy hai điểm A và B sao cho góc của hai đường thẳng OA và OB bằng α không đổi. Tính AB theo R và α .
A . R 1 + 4 sin 2 α 2
B . R + 4 sin 2 α 2
C . R 2 + 4 sin 2 α
D . R 1 + 4 sin 2 α
Một hình trụ có bán kính đáy là r. Gọi O, O' là tâm của hai đáy với O O ' = 2 r Mặt cầu (S) tiếp xúc với hai đáy của hình trụ tại O và O'. Phát biểu nào dưới đây sai?
A. Diện tích mặt cầu bằng diện tích xung quanh của hình trụ
B. Diện tích mặt cầu bằng 2 3 diện tích toàn hình trụ
C. Thể tích khối cầu bằng 2 3 thể tích khối trụ
D. Thể tích khối cầu bằng 3 4 thể tích khối trụ
Khi cắt mặt cầu S (O; R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O; R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O; R) để khối trụ có thể tích lớn nhất.
Cho một hình trụ có hai đáy là hai đường tròn(O ; R) với OO' = R 3 và một hình nón có đỉnh O’ và đáy là hình tròn(O; R) Ký hiệu S 1 ; S 2 lần lượt là diện tích xung quanh của hình trụ và hình nón. Tính k = S 1 S 2
A. k = 1 3
B. k = 2
C. k = 3
D. k = 1 2
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây là đúng ? Tính bán kính mặt cầu ngoại tiếp hình chóp theo a.
A. tan α = 2
B. tan α = 1 2
C. tan α = 1 2
D. tan α = 1
Cho hình nón đỉnh S, đáy là đường tròn (O;r). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8 r 5 . Tính theo r khoảng cách từ O đến (SAB)