Cho hình nón đỉnh S, đáy là đường tròn (0; 5). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8. Tính khoảng cách từ O đến (SAB).
Cho hình nón tròn xoay có đường cao h = 40 (cm), bán kính đáy r = 50 (cm). Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 24 (cm). Tính diện tích của thiết diện
A. S = 800 c m 2
B. S = 1200 c m 2
C. S = 1600 c m 2
D. S = 2000 c m 2
Cho một hình trụ có hai đáy là hai đường tròn(O ; R) với OO' = R 3 và một hình nón có đỉnh O’ và đáy là hình tròn(O; R) Ký hiệu S 1 ; S 2 lần lượt là diện tích xung quanh của hình trụ và hình nón. Tính k = S 1 S 2
A. k = 1 3
B. k = 2
C. k = 3
D. k = 1 2
Cho hình chóp nón N có bán kính đáy bằng R, đường cao SO. Một mặt phẳng (P) cố định vuông góc với SO tại O’ và cắt khối nón theo hình nón có bán kính R’. Mặt phẳng (Q) thay đổi, vuông góc với SO tại điểm O 1 ( O 1 nằm giữa O và O') cắt khối nón theo thiết diện là hình tròn có bán kính x.Tính xtheo R và R’ để (Q) chia phần khối nón nằm giữa (P) và đáy hình nón thành hai phần có thể tích bằng nhau
Cho hình nón tròn xoay có chiều cao h = 20 cm, bán kính đáy r = 25 cm.. Mặt phẳng ( α ) đi qua đỉnh của hình nón cách tâm của đáy 12 cm Tính diện tích thiết diện của hình nón cắt bởi mặt phẳng ( α ) .
A. S = 400 ( c m 2 )
B. S = 406 ( c m 2 )
C. S = 300 ( c m 2 )
D. S = 500 ( c m 2 )
Cho hình cầu (S) tâm I bán kính R. Một mặt phẳng (P) cắt mặt cầu (S) theo đường tròn giao tuyến (L). Khối nón đỉnh I và đáy là đường tròn (L) có thể tích lớn nhất là a π R 3 b 3 ( a , b ∈ N ) . Hỏi a+ b bằng?
A. 10
B. 9
C. 11
D. 13
Cho hình nón có chiều cao bằng 2. Gọi ( α ) là mặt phẳng đi qua đỉnh S của hình nón và cắt mặt đáy hình nón theo một dây cung AB và tạo với đáy hình nón một góc π 4 . Tính diện tích của mặt cắt SAB. Biết dây cung AB có số đo 2 π 3 .
A . 4 6
B . 2 6
C . 4 3
D . 4 2
Một hình nón có chiều cao SO=50cm và có bán kính đáy bằng 10cm Lấy điểm M thuộc đoạn SO sao cho OM=20cm Một mặt phẳng qua M vuông góc với SO cắt hình nón theo giao tuyến là đường tròn (C). Tính diện tích xung quanh của hình nón đỉnh S có đáy là hình tròn xác định bởi (C) (xem hình vẽ).
Cho khối trụ có hai đáy là hai hình tròn (O;R), (O;R’), OO’ = 4R. Trên đường tròn (O;R) lấy hai điểm A, B sao cho AB= R 3 . Mặt phẳng (P) đi qua A, B cắt OO’ và tạo với đáy một góc bằng 60 0 . (P) cắt khối trụ theo thiết diện là một phần của elip. Diện tích thiết diện đó bằng: