Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lan Nhi Nguyễn

Cho hình thoi ABCD tâm I. Biết hai cạnh AB và AD lần lượt có phương trình là 2x - y - 1 = 0 và x - 2y - 5 = 0 , tâm I thuộc Parabol y ^ 2 = x . Tính toạ độ các đỉnh của hình thoi.

Nguyễn Việt Lâm
26 tháng 3 2022 lúc 14:28

A là giao điểm AB và AD nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;-3\right)\)

Do I thuộc \(y^2=x\) nên tọa độ có dạng: \(I\left(a^2;a\right)\)

I là tâm hình thoi \(\Rightarrow d\left(I;AB\right)=d\left(I;AD\right)\Rightarrow\dfrac{\left|2a^2-a-1\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|a^2-2a-5\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}2a^2-a-1=a^2-2a-5\\2a^2-a-1=-a^2+2a+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2+a+4=0\left(vn\right)\\3a^2-3a-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-1\\a=2\end{matrix}\right.\)

TH1: \(a=-1\Rightarrow I\left(1;-1\right)\)

Do I là trung điểm AC nên tọa độ C: \(\left\{{}\begin{matrix}x_C=2x_I-x_A=3\\y_C=2y_I-y_A=1\end{matrix}\right.\) \(\Rightarrow C\left(3;1\right)\)

Đường thẳng BC song song AD và đi qua C nên có pt:

\(1\left(x-3\right)-2\left(y-1\right)=0\Leftrightarrow x-2y-1=0\)

B là giao điểm AB và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}2x-y-1=0\\x-2y-1=0\end{matrix}\right.\) \(\Rightarrow B...\)

Tương tự, đường thẳng CD song song AB và đi qua C nên có pt:

\(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow...\Rightarrow D\)

Tương tự với trường hợp \(a=2\Rightarrow I\left(4;2\right)\)


Các câu hỏi tương tự
Sadie Dominic
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Bùi Nhật Vy
Xem chi tiết
HP Channel
Xem chi tiết
Ngọc Chi
Xem chi tiết
Chan Hina
Xem chi tiết
Nguyễn Đình Phát
Xem chi tiết
Cường
Xem chi tiết
manhduc nguyen
Xem chi tiết