ABCD là hình thoi
=>AC vuông góc với BD tại trung điểm của mỗi đường
=>AC\(\perp\)BD tại O và O là trung điểm chung của AC và BD
Ta có:ABCD là hình thoi
=>AB//CD và AD//BC và AB=BC=CD=DA
Xét ΔEBO vuông tại E và ΔGDO vuông tại G có
BO=DO
\(\widehat{EBO}=\widehat{GDO}\)
Do đó: ΔEBO=ΔGDO
=>EO=GO
Ta có: ΔEBO=ΔGDO
=>\(\widehat{EOB}=\widehat{GOD}\)
mà \(\widehat{GOD}+\widehat{GOB}=180^0\)(hai góc kề bù)
nên \(\widehat{EOB}+\widehat{GOB}=180^0\)
=>E,O,G thẳng hàng
mà OE=OG
nên O là trung điểm của EG
Xét ΔOHD vuông tại H và ΔOFB vuông tại F có
OD=OB
\(\widehat{ODH}=\widehat{OBF}\)(hai góc so le trong, AD//BC)
Do đó: ΔOHD=ΔOFB
=>OH=OF
Ta có; ΔOHD=ΔOFB
=>\(\widehat{HOD}=\widehat{FOB}\)
mà \(\widehat{FOB}+\widehat{FOD}=180^0\)
nên \(\widehat{HOD}+\widehat{FOD}=180^0\)
=>H,O,F thẳng hàng
mà OH=OF
nên O là trung điểm của HF
ABCD là hình thoi
=>AC là phân giác của góc BAD
=>\(\widehat{BAC}=\widehat{DAC}\)
Xét ΔAEO vuông tại E và ΔAHO vuông tại H có
AO chung
\(\widehat{EAO}=\widehat{HAO}\)
Do đó: ΔAOE=ΔAOH
=>OH=OE
mà \(OH=\dfrac{HF}{2};OE=\dfrac{EG}{2}\)
nên HF=EG
Xét tứ giác EFGH có
O là trung điểm chung của EF và GH
=>EFGH là hình bình hành
Hình bình hành EFGH có HF=EG
nên EFGH là hình chữ nhật