Cho hình thoi ABCD, góc B tù, O là giao điểm của hai đường chéo. Kẻ BM vuông góc với AD, BN vuông góc với CD, DP vuông góc với AB, DQ vuông góc với BC. Gọi H là giao điểm của MB và PD, K là giao điểm của BN và DQ. Chứng minh: a) A, H, O thẳng hàng. b) A, H, K, C thẳng hàng. c) Tứ giác BHDK là hình thoi.
a: Xét ΔAMB vuông tại M và ΔAPD vuông tại P có
AB=AD
góc A chung
Do đó: ΔAMB=ΔAPD
=>AM=AP
Xét ΔAMH vuông tại M và ΔAPH vuông tại P có
AH chung
AM=AP
Do đó: ΔAMH=ΔAPH
=>góc MAH=góc PAH
=>AH là phân giác của góc BAD(1)
ΔABD cân tại A
mà AO là trung tuyến
nên AO là phân giác của góc BAD(2)
Từ (1), (2) suy ra A,H,O thẳng hàng
b: Xét ΔCDB có
DQ,BN là đường cao
DQ cắt BN tại K
Do đó; K là trực tâm của ΔCDB
=>CK vuông góc BD
ΔCBD cân tại C
mà CO là trung tuyến
nên CO vuông góc BD
=>C,K,O thẳng hàng
C,K,O thẳng hàng
A,H,O thẳng hàng
A,O,C thẳng hàng(ABCD là hình thoi có O là giao của hai đường chéo AC và BD)
Do đó: C,K,O,H,A thẳng hàng
=>A,H,K,C thẳng hàng
=>HK vuông góc DB
c: Xét tứ giác BHDK có
BH//DK
BK//DH
Do đó: BHDK là hình bình hành
mà HK vuông góc BD
nên BHDK là hình thoi