Cho hình thoi ABCD có A nhọn. O là giao điểm AC, BD. Kẻ OM vuông góc với AB. P thuộc cạnh BC sao cho BP>BM. Qua A kẻ đường thẳng song song với MP, cắt CD tại Q. Chứng minh: PQ là tiếp tuyến của (O;OM).
MN giup em voi a. cam on nhieu a. em dang can gap
Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Lấy điểm D thuộc (O) sao cho BD song song với AO. AD cắt (O) tại đểm thứ hai E. Gọi M là trung điểm của AC.
a) Chứng minh rằng Me là tiếp tuyến với (O).
b) Gọi T là giao điểm của ME với BC, I là giao điểm của DE với BC. Chứng minh rằng OI vuông góc với AT.
c) Qua E kẻ đường thẳng song song với AB cắt BC, BD lần lượt tại P, Q. Chứng minh rằng PQ=PE.
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
oán 9 Cho nửa đường tron (O) đường kính AB. Kẻ bán kính OM sao cho góc AOM là góc nhọn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Kẻ AC vuông góc với xy tại C. BD vuông góc với xy tại D, cắt nửa đường tròn tại K ( K khác B). Nối OK. Chứng minh:
a>góc OKB= góc OBK.
b>AK song song xy.
c>AB là tiếp tuyến của đường tròn đường kính cd
Cho đường tròn (O) và (O') cắt nhau tại A và B (O,O' thuộc 2 nửa mặt phẳng bờ AB), một cát tuyến kẻ qua A cắt (O) ở C, cắt (O') ở D. Kẻ OM vuông góc với CD, O'N vuông góc với CD
a) Chứng minh: CD=2MN
b) Gọi I là trung điểm của MN. Chứng minh: đường thẳng kẻ qua I vuông góc với BC đi qua 1 điểm cố định khi cát tuyến vẽ qua A thay đổi
c) Qua A kẻ cát tuyến // với đường nối tâm OO', cắt (O) tại P, cắt (O') tại Q. So sánh PQ và CD.
Cho đường tròn (O; R) đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Cho đường tròn (o;r) và một điểm A nằm cách O một khoảng bằng 2R từ A vẽ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm) đường thẳng vuông góc với OB tại O cắt AC tại N, đường thẳng vuông góc với OC tại O cắt AB tại M
a, Tính sinOAB, tanOAB
b,chứng minh OM song song AC ,ON song song AB
c,chứng minh tứ giác AMON là hình thoi từ đó chứng tỏ MN là tiếp tuyến của đường tròn
d, tính diện tích hình thoi AMON
Giải hộ mình bài này với: Cho tam giác nhọn ABC nội tiếp đường tròn (O), có AB<AC. Kẻ các đường cao BE, CF. Gọi H là trực tâm, M là giao điểm của EF và AH. Vẽ đường kính AK cắt cạnh BC tại N.
a) Chứng minh tứ giác BFEC nội tiếp
b) Chứng minh HK song song với MN
c) Qua H vẽ đường thẳng cắt AB, AC lần lượt tại P, Q sao cho HP=HQ. Chứng minh HK vuông góc với PQ.
đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Từ điểm A nằm ngoài đường tròn (O) , kẻ tiếp tuyến AB đến đường tròn ( B là tiếp điểm) . Kẻ dây BC vuông góc với OA tại H
Chứng minh : H là trung điểm của bc và AC là tiếp tuyến của (O)Qua B kẻ đường thẳng song song với OA , đường thẳng này cắt (O) tại D ( D khác B ). chứng minh C,O,D thẳng hàngkẻ BI vuông góc với CD tại 1 . Chứng minh : HO * HA = \(\frac{CI\cdot CD}{4}\)Gọi K là giao điểm của AD và BI . Chứng minh : K là trung điểm của BI