Bài 3 Cho hình thang vuông ABCD \(\widehat{A}=\widehat{D}=90^o\) . Gọi M là một điểm trên cạnh AD sao cho chu vi tam giác MBC nhỏ nhất. Chứng minh \(\widehat{AMB}=\widehat{DMC}\)
cho hình thang vuông ABCD góc A bằng góc D bằng 90 độ . gọi M là một điểm nằm trên cạnh AD sao cho chu vi tam giác MBC nhỏ nhất. chứng minh góc AMB bằng góc DMC ?
cho hình thang vuông ABCD, ^A=^D=90^,gọi M là 1 điểm trên AD , sao cho chu vi tam giác MBC nhỏ nhất. CMR AMD=DMC
cho hình thang vuông ABCD\(\left(\widehat{A}=\widehat{D}=90^0\right)\)có đáy nhỏ AB=5cm, đáy lớn CD =9cm; góc tạo bởi đáy lớn và cạnh bên là 45o. Tính chu chu vi hình thang vuông ABCD
Cho hình thang vuông ABCD, \(\widehat{A}=\widehat{D}=90^o\)có I là trung điểm AD và CI là tia phân giác của góc C. Gọi H là chân đường vuông góc kẻ từ I đến BC. Chứng minh rằng :
a ) \(\widehat{AHD}=90^o\)
b ) \(\widehat{BIC}=90^o\)
c ) \(AB+CD=BC\)
cho hình thang vuông ABCD ( \(\widehat{A}\)= \(\widehat{D}\)= \(90^o\)).Gọi H là điểm đối xứng với B qua AD, I là giao điểm của CH và AD . Chứng minh rằng \(\widehat{AIB}\) =\(\widehat{DIC}\)
11: Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho
\(\widehat{EDC}=\widehat{ECD}=15^o\)
a) Vẽ điểm F trong hình vuông sao cho \(\widehat{FAD}=\widehat{FDA}=15^o\) . Chứng minh rằng tam
giác DEF là tam giác đều.
b) Chứng minh rằng tam giác ABE là tam giác đều.
cho hình thang ABCD;\(\widehat{A}=\widehat{D}=90^o.\)Gọi E là điểm đối xứng với C qua AD; I là giao điểm của BE và AD
a) Chứng minh ID là tia phân giác của CIE
b) Tia CI cắt AB ở F. Chứng minh F đối xứng với B qua AD
Bài 1 : Cho tam giác ABC, điểm D thuộc cạnh AC sao cho AD=1/2 DC. Gọi M là trung điểm của BC , I là giao điểm của BD và AM . Chứng minh AI=AM
bài 2: Cho hình thang vuông ABCD ( \(\widehat{A}\)\(=\widehat{D}\)\(=90^o\)) có I là trung điểm của BC . Chứng minh rằng tam giác IAD cân
xin hãy giúp mình thật nhanh
mình đang cần raất gấp