Cho hình thang vuông ABCD có góc A=góc B=90o và AD=2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD. CMR CI vuông góc với AI
Cho hình thang vuông ABCD, có góc A= góc B=90 độ và AD=2BC, kẻ AH vuông góc với BD. Gọi I là trung điểm HD. Chứng minh CI vuông góc AI
cho hình thang vuông ABCD có góc A=90;góc B=90;AB=BC=1/2 AD.E là trung điểm của AD. a)tứ giác ANCE là hình gì?Vì sao? b) kẻ AH vuông góc BD(H thuộc BD).Gọi M,N lần lượt là trung điểm của HD,HA. tg BCMN là hình bình hành c)AM vuông góc MC
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác vuông ABC có \(\widehat{A}\) = 90o. Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a) Chứng minh tứ giác AEHG là hình chứ nhật
b) Gọi N là trung điểm của AE. Gọi O là giao điểm của AH và DE. Chứng minh ba điểm M,O, N thẳng hàng
Cho hình thang vuông ABCD với góc A bằng góc B bằng 90 độ AD=2BC
a) Kẻ CK vuông góc với AD tại K Tứ giác ABCK là hình gì? Tại sao?
b) Gọi AH là đường cao của tam giác ABD. E và F lần lượt là trung điểm của AH và DH chứng minh rằng tứ giác BCFE là hình bình hành
c) Chứng minh BE vuông góc với AF
Cho hình thang vuông ABCD với góc A bằng góc B bằng 90 độ AD=2BC
a) Kẻ CK vuông góc với AD tại K Tứ giác ABCK là hình gì? Tại sao?
b) Gọi AH là đường cao của tam giác ABC. E và F lần lượt là trung điểm của AH và DH chứng minh rằng tứ giác BCFE là hình bình hành
c) Chứng minh BE vuông góc với AF
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho hình bình hành ABCD có AB>AC. Từ A kẻ AM vuông góc với BD tại M, từ B kẻ BN vuông góc với DC tại N.
a) CMR: tam giác AMB đồng dạng với tam giác BND
b)Lấy I thuộc ab sao cho AI=\(\dfrac{1}{3}\) AB. Gọi K là giao điểm của CI và DA. CI cắt BD tại E, A' đối xứng với A qua K. CMR: I là trọng tâm của tam giác ACA'
c) CMR: \(EC^2\) = EI.EK
Cứu mik câu b vói ạ