Chọn D.
Phương án A: = AB.DC.cos00
= 8a2 nên loại A.
Phương án B: suy ra nên loại B.
Phương án C: suy ra nên loại C.
Phương án D: không vuông góc với suy ra nên chọn D.
Chọn D.
Phương án A: = AB.DC.cos00
= 8a2 nên loại A.
Phương án B: suy ra nên loại B.
Phương án C: suy ra nên loại C.
Phương án D: không vuông góc với suy ra nên chọn D.
Cho hình thang vuông ABCD có đường cao AB = 2a, đáy lớn BC = 3a, đáy nhỏ AD = a. Gọi I là trung điểm của CD. Tìm mệnh đề đúng?
A. Góc AIB là góc vuông
B. Tam giác BIC là tam giác vuông
C. AI và BD vuông góc với nhau
D. Tất cả sai
Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD . Khi đó I A → + I B → . I D → bằng :
A.
B.
C. 0
D. 9a2
Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a. Tính D A → . B C →
A. -9a2
B. 3a2
C. 0
D. 6a2
cho hình thang ABCD vuông góc A và D đáy lớn CD 2 cạnh AD và BD lần lượt nằm trên 2 đường thẳng có phương trình :2x+y+3=0 và 3x-y+7=0 góc tạo bởi BC và AB 45 độ . Tính tọa độ B biết hoành độ B>-2 và diện tích hình thang =15/2
Cho hình thang vuông ABCD, đường cao AB=2a, đáy lớn BC=3a, đáy nhỏ AD=2a
a) Tính \(\overrightarrow{AB}.\overrightarrow{CD},\overrightarrow{BD}.\overrightarrow{DC},\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I là trung điểm CD. Tính \(\overrightarrow{AI}.\overrightarrow{BD}\). Suy ra góc giữa AI và BD
Cho hình thang ABCD vuông tại A và D có đáy nhỏ AB,đáy lớn CD.Biết AB=a,Ad=a√3,
3,góc BCD=60 độ.Gọi M là điểm di chuyển trên AB.Tìm dộ dài lớn nhất,độ dài nhỏ nhất của vectơ
CM
Cho hình thang ABCD , đáy lớn AB=3a, đáy nhỏ CD=a, cạnh AD=a, Â =60°. M,N lần lượt là trung điểm AB,CD. Tính độ dài BC, MN
Cho hình thoi ABCD cạnh bằng a. câu nào sau đây sai
A. BA = AD B. AB+BC = 2a C. BC = DC D. BA,DC ngược hướng
Cho hình thang ABCD vuông tại A và D có AB=6a, CD=3a và AD=3a. Gọi M là điểm thuộc cạnh AD sao cho MA=a. Tính (vectoMB+2vectoMC). vectoCB