NQ=căn 3^2+4^2=5cm
NO=4^2/5=3,2cm
MO=căn 4^2-3,2^2=2,4cm
MP=4^2/2,4=20/3(cm)
=>NP=16/3(cm)
NQ=căn 3^2+4^2=5cm
NO=4^2/5=3,2cm
MO=căn 4^2-3,2^2=2,4cm
MP=4^2/2,4=20/3(cm)
=>NP=16/3(cm)
Cho hình thang vuông ABCD (góc A= góc D=90 độ ), đường chéo BD vuông góc với cạnh bên BC. Biết AD=12 cm, DC=25 cm. Tính độ dài các cạnh AB, BC, đường chéo BD.
Cho hình thang vuông MNPQ có góc M = góc N = 90 độ , MQ = 32cm , NP = 40cm , MN = 17 cm.
a.Tính diện tích hình thang MNPQ
b. Tính góc P và QP?
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Cho hình thang ABCD, góc A = góc D =90 độ. Hai đường chéo vuông góc với nhau tại O. Biết OB=5,4 cm; OD=15 cm.
a) Tính diện tích hình thang;b) Qua O vẽ 1 đường thẳng song song với hai đáy, cắt AD và BC lần lượt tại M và N. Tính độ dài MN.Câu 11.11. Tính diện tích hình thang ABCD, có đường cao bằng 12 cm, hai đường chéo AC và BD vuông góc với nhau, DB = 15 cm.
Câu 11.12. Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tìm đường cao của hình thang
Cho hình thang ABCD có góc A = góc D =90 độ ; góc B = 60 độ ; CD = 30 cm . Đường chéo AC vuông góc với cạnh bên BC . Tính diện tích ABCD
Cho hình thang ABCD vuông tại A và D, đường chéo BD vuông góc với cạnh bên BC. Biết AD = 12/5 cm, BC = 4cm. Tính AC
BÀI 8; CHO hình thang ABCD ( AD // BC, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 độ
a, CM: ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
Cho hình vuông ABCD và tứ giác MNPQ có 4 đỉnh thuộc 4 cạnh của hình vuông.
a. Chứng minh rằng\(S_{ABCD}\le\frac{AC}{4}\left(MN+NP+PQ+QM\right)\)
b. Xác điịnh vị trí điểm M, N, P, Q để chu ci tứ giác MNPQ nhỏ nhất.
Cho hình thang vuông ABCD có góc A=góc D=90 độ. Đường chéo BD vuong góc với cạnh bên BC. Biết AD=12cm, DC=25cm. Tính độ dài các cạnh AB, BC và đường chéo BD.