Cho hình thang cân , đáy nhỏ AB , đáy lớn CD . Góc nhọn hợp bởi 2 đường chéo AC và BD bằng 60 độ . Gọi M , N là hình chiếu của B , C lên AC và BD , P là trung điểm của BC . Chứng minh rằng tam giác MNP là tam giác đều
cho hình thang cân có đáy nhỏ AB, đáy lớn CD ,góc nhọn hợp bởi 2 đường chéo AC và BD =600. Gọi M,N lần lượt là hình chiếu của Bvà C lên AC và Bd ,P là trung điểm BC .chứng minh tam giác MNP là tam giác đều
Cho hình thang cân , đáy nhỏ AB đáy lớn CD . góc nhọn hợp bởi hai đg chéo AC và BD = \(60^O\).Gọi M,N là hình chiếu của B và C lên AC và BD ,P là trung điểm củ cạnh BC . Cm tam giác MNP là tam giác đều
Cho hình thang cân ABCD, đáy nhỏ AB, đáy lớn CD.Góc nhọn hợp bởi hai đường chéo AC và BD bằng 60 độ. Gọi M,N là hình chiếu của B và C lên AC và BD. P là trung điểm BC.Chứng minh tam giác MNP đều Mọi người làm giúp e , tối nay e phải nộp rồi ạ, hứa tick ạ
1) Cho hình thang ABCD có đáy lớn CD bằng tổng 2 cạnh bên. C/m rằng Các tia phân giác của 2 góc của đáy nhỏ cắt nhau tại 1 điểm của đáy lớn
2) Cho hình thang cân ABCD. Đáy nhỏ AB, đáy lớn CD góc nhọn hợp bởi 2 đường chéo AC và BD bằng 600. Gọi M,N lần lượt là Hinh chiếu của B,C lên AC và BD, P là trung điểm của BC. C/m tam giác MNP đều
cho hình thang cân ABCD , AB // CD, AB<CD, 2 đường chéo AC và BD hợp 1 góc = 60 độ. M, N là hình chiếu của B và C nên AC, BD. P là trung điểm của BC. CM: tam giác MNP đều
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh A, B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều
Cho hình thang cân ABCD (AB//CD, AD = BC), có đáy nhỏ AB. Độ dài đường cao BH bằng độ dài đường trung bình MN (M thuộc AD, N thuộc BC) của hình thang ABCD. Vẽ BE//AC (E thuộc DC). Gọi O là giao điểm của AC và BD. Chứng minh rằng
a) MN = \(\frac{DE}{2}\)
b) Tam giác OAB cân
c) Tam giác DBE vuông cân
cho hình thang cân ABCD (AB // CD) I là giao điểm hai đường chéo AC và BD , góc AIB = 60' gọi B' , C' là hình chiếu của B và C trên AC và BD.
a) chứng minh B' C' = 1/2 BC
b)Gọi E là trung điểm BC,chứng minh tam giác B'C'E đều