Cho hthang ABCD, BC // AD (AD > BC). Gọi M, N là 2 điểm trên AB, CD sao cho \(\frac{AM}{AB}=\frac{CN}{CD}\). Đoạn thẳng MN cắt AC tại E, cắt BD tại F. Qua M kẻ MP // BD \(\left(P\in AD\right)\), MP cắt AC tại K, PN cắt BD tại H.
CMR:
a) PN // AC
b) T/g EKHN, MFHK là hbh
#Nhanh nha
Cho hình chữ nhật ABCD ( AB > CB). Trên AD, BC lấy E, F sao cho AE= CF.
a) CMR: BE//DF.
b) Gọi O là trung điểm BD. CMR: AC, BD, EF đồng quy.
c) Qua O kẻ đường thẳng d vuông góc BD, đ cắt AB tại M, cắt CD tại N. CMR: MBND là hình thoi.
d) Đường thẳng qua B//MN, đường thẳng qua N//BD cắt nhau tại K. CMR: AC vuông góc CK.
Cho hình thang ABCD (AB//CD), O là giao điểm của 2 đường chéo. Các điểm M, N trên AD, CB sao cho AM/MD=CN/NB.Gọi giao điểm của MN với BD và AC lần lượt là E và F. Đường thẳng qua M song song với AC cắt CD tại H.
a, CMR: HN//BD
b, Gọi giao điểm của HO và MN là I. CMR: IE=IF, ME=NF
Cho hình thang ABCD, đáy AB. Từ đỉnh C, kẻ đường thẳng song song với AD, đường này cắt BD tại P và cắt AB tại E. Qua D, kẻ đường thẳng song song với BC, đường này cắt AC tại N và AB tại F. Đường thẳng qua E, song song với AC cắt BC tại Q và đường thẳng qua F song song với BD cắt AD tại M
a, Chứng minh bốn điểm M,N,P,Q nằm trên 1 đường thẳng song song với hai đáy
b, Chứng minh: MN = PQ
c, Cho AB=a, CD=b. Chứng minh rằng các điểm M, N,P, Q theo thứ tự chia các đoạn thẳng AD, AC, BD, DC theo cùng 1 tỉ số k. Tính k theo a và b.
1.Cho hình bình hành ABCD .Gọi M và N là các trung điểm của AD và BC
a)C/m BM//DN
b)C/m AC ,BD và MN đồng quy
c)AC cắt BM và CN tại E và F , BF cắt CD tại K .C/m DE=2KF
2.Cho hình bình hành ABCD .Trên các cạnh AB,CD lấy điểm E,F sao cho AE=CF
a) C/m BDEF là hình bình hành
b)C/m AC ,BD và EF đồng quy
c)CD và BF cắt AC tại H và K . C/m AH=CK
cho hình thang ABCD (AB//CD). Có AC cắt BD tại I. Đường thẳng qua I và song song cới hai đáy cắt AD và BC lần lượt ở M và N. Chứng Minh : 1) MI/AB =CN/CB . 2) MI=IN
cho tứ giác ABCD. AC cắt BD tại O, vẽ OE//BC (E thuộc AB), OF//CD (F thuộc AD) a) chứng minh EF//BD b) đường thẳng vẽ qua A song song với CB cắt BD tại M, đường thẳng vẽ từ B song song với AD cắt AC tại N. cứng minh MN//CD
Cho hình thang ABCD (AB//CD), AB = 2; CD = 5. Gọi M, N lần lượt là trung điểm của AD và BC. Đoạn thẳng MN cắt BD tại E, cắt AC tại F. Tính độ dài EF.
Giúp minhf với
Cho hình thang ABCD ( AB // CD ) , H thuộc cạnh CD . Qua H kẻ đường thẳng song song với AC, cắt BD, AD lần lượt tại I và M . Qua H kẻ tiếp đường thẳng song song BD, cắt AC, BC lần lượt tại M và N.
a) Chứng minh : IK // MN
b) Gọi E,F lần lượt là giao điểm của MN với BD và AC .Chứng minh : ME = NF
Giúp với mọi người hình mình tự vẽ