Cho hình thang ABCD (AB//CD). Gọi E, F là trung điểm của BD và AC
a) Chứng minh rằng EF//CD.
b) Đường thẳng qua E vuông góc với AD cắt đường thẳng qua F vuông góc với BC tại G. Chứng minh rằng điểm G nằm trên đường trung trực của đoạn thẳng CD.
Cho tam giác ABC, AB<AC. Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ A, B, C xuống BC, AC, AB. Gọi P là giao điểm của BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S.
a) CMR BQCR nội tiếp đường tròn
b) CMR PB/PC = BD/CD và D là trung điểm của BC
c) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC
cho hình chữ nhật abcd bt ab=8cm,cd=6cm.từ c kẻ ch vuông góc với bd(h thuộc bd) a,giải tam giác vuông bcd. b,gọi o là giao điểm của ac và bd , qua điểm h kẻ đường thẳng he vuông góc với ac(e thuộc ac) ,tính ch,bh,ce? c,gọi f là giao điểm của eh và ad,tính diện tích tam giác aef
Cho hình chữ nhật ABCD,biết BC=8cm,CD=6cm.Từ C kẻ CH vuông góc với BC(H thuộc BD). A,giải tam giác vuông BCĐ. B,gọi O là giao điểm của AC và BD. Qua điểm H kẻ đường thẳng HE vuông góc với AC (E thuộc AC).Tính CH,BH,CE? C,gọi F là giao điểm của EH và AD.Tính diện tích tam giác AEF.
Giúp mk với!!!
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD và DA.
a) C/m: Bốn điểm E, F, G, H cùng thuộc một đường tròn.
b) Giả sử AB = 24 cm và BD = 18 cm. Tính bán kính của đường tròn đi qua bốn điểm E, F, G, H.
Cho hình thang ABCD(AB//CD, AB<CD). Gọi K, M lần lượt là trung điểm của BD, AC. Đường thẳng qua K và vuông góc với AD cắt đường thẳng qua M và vuông góc với BC tại Q. Chứng minh:
a) KM//AB
b) QD=QC
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
Cho tam giác cân ở A. Gọi D, F lần lượt là trung điểm của AB, AC. Các đường trung trực AB, AC cắt nhau tại O. Gọi G và E tương ứng là trọng tâm tam giác ABC và ACD. Gọi H là trung điểm của BC. Từ G kẻ đường thẳng song song với AC cắt BC tại I. CM:
a)GH/AD = HI/DO
b)ADG đồng dạng với DOE
c)OE vuông góc với CD
Cho tứ giác ABCD nội tiếp (O) và góc BCD nhọn. Đường chéo AC đi qua trung điểm M của đường chéo BD. Đường thẳng vuông góc với DC tại D và đường trung trực của BD cắt nhau tại E. AB và CD cắt nhau tại F. Cm: AB vuông góc EF