Cho hình thang ABCD(AB//CD), AC cắt BD tại I, AD cắt BC tại K, IK cắt AB,CD theo thứ tự M,N
a) CM \(\frac{AM}{DN}=\frac{AI}{CI}\)
b)CM \(AM\cdot CN=AB\cdot KD\)
c)CM \(\frac{AM}{CN}=\frac{AI}{CI}\)
Cho hình thang ABCD ( AB//CD) M là trung điểm của CD AM cắt BD tại I BM cắt AC tại K a) Cm: IK//AB b )IK cắt AD và BC tại lần lượt là E,F cm:EI=IK=KF
BA ĐƯỜNG PHÂN GIÁC TRONG AM, BN, CP CỦA TAM GIÁC ABC ĐỒNG QUI TẠI I
A) CM \(\frac{AP}{BP}\cdot\frac{BI}{NI}\cdot\frac{NC}{AC}=1\)
B) CM \(\frac{BM}{CM}\cdot\frac{CI}{PI}\cdot\frac{PA}{BA}=\frac{CN}{AN}\cdot\frac{AI}{MI}\cdot\frac{MB}{CB}\)
C) CHO AB=15, BC=17, CA=8. TÍNH IA, IB, IC
cho hình chữ nhật ABCD có AM và CN vuông góc với đường chéo BD
a) CM: AM=CN
b) CM: AMCN là hình bình hành c) AM cắt CD tại I và CN cắt AB tại K. Gọi O là trung điểm BD. CM: I, O, K thẳng hàng
Cho hình thang ABCD(BC//AD). M,N là 2 điểm trên AB,CD sao cho AM/AB=CN/CD. Đường thẳng MN cắt AC tại E. MN cắt BD tại F. Kẻ MI//BD(I thuộc AD).
a)C/m: IN//AC
b)IN cắt BD tại H, MI cắt AC tại K. C/m: KH//MN
cho hbh abcd có ac cắt bd tại o . m là trung điểm của bc .am cắt bd tại i . ci cắt ab tại e
a, cm e là trung điểm của ab
b, qua a kẻ đường thẳng song song với ce cắt bd tại k . dm bi=ik=kd
cho hình thang ABCD có AB//CD, M là trung điểm của CD, I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a) C/m: IK//AB
b) IK cắt AD và BC theo thứ tự tại E và F. C/m: IE=IK=KF
c) Gọi O là giao điểm của AC và BD. MO cắt AB tại N, MO cắt BC tại S. CMR: N là trung điểm của AB và 3 điểm A,D,S thẳng hàng
nhờ mn giải giúp e ạ
Cho hình bình hành ABCD, M,N theo thứ tự là trung điểm BC, AD. AM cắt BD tại P, CN cắt BD tại Q
a/ CM BP=PQ=QD
b/ GỌi I là giao của AM với BN. K là giao của DM và CN
CMR: AC,BD,MN,IK đồng qui
Cho hbh ABCD . Đường thẳng đi qua D cắ ac tại I và BC ở N , cắt AB ở M
a)CM\(AM\cdot CN=BC\cdot CN\)
b)CM\(AM\cdot CN\)ko phụ thuộc vào vị trí của D
c)CM\(ID^2=IM\cdot IN\)