Lời giải:
$AB=\frac{2}{3}\times CD$
$AB+\frac{2}{3}\times AB=\frac{2}{3}\times CD+\frac{2}{3}\times AB$
$AB\times \frac{5}{3}=\frac{2}{3}\times (AB+CD)$
$AB=\frac{2}{3}\times (AB+CD):\frac{5}{3}=\frac{2}{5}\times (AB+CD)$
Do đó:
$\frac{S_{ABD}}{S_{ABCD}}=\frac{AB\times h:2}{(AB+CD)\times h:2}=\frac{AB}{AB+CD}=\frac{2}{5}$
$S_{ABD}=\frac{2}{5}\times S_{ABCD}=\frac{2}{5}\times 95=38$ (cm2)