Cho tứ giác ABCD có các tia phân giác của góc A và D vuông góc với nhau tại E
a) Tứ giác ABCD là hình gì? Chứng minh
b) Các tia phân giác của các góc B và C cắt nhau tại F. Các tia phân giác của các góc ngoài đỉnh A và D cắt nhau tại M. Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. Chứng minh 4 điểm M,N,E,F thẳng hàng
c) Cho biết AB = a, BC = b, CD = c, DA= d (a,b,c,d có cùng đơn vị độ dài). CMR: Nếu a+c=b+d thì E trùng với F
Giúp em với ạ, vẽ hình giúp em nhé. Cảm ơn mn ạ
\(2.cho hình thang ABCD, đáy AB và CD. Các phân giác góc ngoài tại đỉnh A và D cắt nhau ở M. Các phân giác của các góc ngoài tại đỉnh B và C cắt nhau ở N. a, Chứng minh MN// CD b, Tính chu vi hình thang ABCD biết MN=4cm\)
cho hình thang ABCD(AB//CD). Các tia phân giác của các góc A và B cắt nhau tại F, các tia phân giác của các góc B và C cắt nhau tại F, các tia phân giác của các góc A và B cắt nhau tại K thuộc đáy lớn DC.
a. c/m tam giác AED, BFC là tam giác vuông
b. c/m hộ thức DC=DA+BC
c. Gọi M,N là trung điểm của các ạnh bên AD,BC. c/m M,E,F,N thẳng hàng
GIÚP MÌNH NHA!
Hình thang ABCD có AB // CD, AB = a, BC = b, CD = c, DA = d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N
a) Chứng minh rằng MN // CD
b) Tính độ dài MN theo a, b, c, d (a, b, c, d có cùng đơn vị đo)
Hình thang ABCD có AB song song CD cóAB < CD , Các tia phân giác của góc A và D cắt nhau ở E . Các tia phân giác của các góc B và C cắt nhau ở F . Gọi M,N theo thứ tự là trung điểm của AD,BC . Gọi G là giao điểm của AE và CD .
a) Chứng minh: AED=90 độ và AE=EG .
b) Chứng minh: M,E,F,N thẳng hàng
c) Tính các độ dài MN,ME,FN theo .a,b,c,d
LÀM GẤP GIÚP E CÁI Ạ
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Bài 9: Cho hình thang ABCD (AB // CD). Gọi E và F lần lượt là trung điểm của AD và BC. Đường thắng EF cắt BD tại I, cắt AC tại K.
a) Chứng minh: AK = KC, BI = ID
b) Cho AB = 6, CD = 10. Tính EI, KF, IK.
Bài 4: Cho tam giác ABC cân tại A, có M là trung điểm của BC . Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F . Chứng minh:
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF .
Bài 5: Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm AM. Gọi BD cắt AC tại E. Gọi I là trung điểm EC. Chứng minh AE = EI = IC.
Bài 6: Cho tam giác ABC, đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K là trung điểm GB, GC. Chứng minh: DE // IK, DE = IK.
Bài 1: Cho tam giác ABC cân tại A, có M là trung điểm của BC . Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F . Chứng minh:
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF .
Bài 2: Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm AM. Gọi BD cắt AC tại E. Gọi I là trung điểm EC. Chứng minh AE = EI = IC.
Bài 3: Cho tam giác ABC, đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K là trung điểm GB, GC. Chứng minh: DE // IK, DE = IK.