a: Xét ΔADC vuông tại A và ΔHAC vuông tại H có
góc ACD chung
=>ΔADC đồng dạng với ΔHAC
b: S ACD=1/2*AC*AD=1/2*AH*CD
=>AC*AD=AH*CD
c: CD=căn 12^2+16^2=20cm
HD=12^2/20=144/20=7,2cm
HC=20-7,2=12,8cm
a: Xét ΔADC vuông tại A và ΔHAC vuông tại H có
góc ACD chung
=>ΔADC đồng dạng với ΔHAC
b: S ACD=1/2*AC*AD=1/2*AH*CD
=>AC*AD=AH*CD
c: CD=căn 12^2+16^2=20cm
HD=12^2/20=144/20=7,2cm
HC=20-7,2=12,8cm
Cho hình thang ABCD (AB//CD), AB<CD và đường chéo AC vuông góc với cạnh bên AD, đường cao AH.
a) Chứng minh tam giác ADC đồng dạng tam giác HAC
b) Chứng minh AC.AD=AH.CD
c) Cho biết AB=14cm ;AC=16cm và AD=12cm. Tính độ dài các đoạn thẳng HD, HC và diện tích hình thang ABCD
1.Cho tam giác ABCcân tại A có AB = AC = 100cm, BC = 120cm. Hai đường cao AD, BE cắt nhau tại H.a)Tìm các tam giác đồng dạng với tam giác BDHb)Tình độ dài các đoạn: HD, AH, BH, EH
2.Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Đường cao AH, đường phân giác BDa)Tình độ dài AD, DCb)Gọi I là giao điểm của AH và BD. C/m: AB.BI = BD.HBc)C/m: Tam giác AID cân
3.Cho hình thang cân ABCD (AB//CD), AB < CD. Đường cao BH chia cạnh CD thành 2 đoạn DH = 16cm, HC = 9cm. Biết BD vuông góc BC.a)Tính đường chéo AC và BD của hình thangb)Tính diện tích hình thangc)Tính chu vi hình thang
Cho hình thang cân ABCD có AB // CD và AB < CD, đường chéo BD vuông góc với cạnh bên BC, đường cao BH. a) Chứng minh tam giác BDC và tam giác HBC đồng dạng. b) Cho BC = 6 cm; DC = 10 cm. Tính độ dài đoạn thẳng HC , HD. c) Chứng minh : HB2 = HD.HC
Cho hình thang ABCD (AB//CD) và AB<CD. Đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao BH.
a, Chứng minh hai tam giác BDC và HBC đồng dạng
b, Cho BC=15cm; DC=25cm. Tính HC và HD
c, Tính diện tích hình thang ABCD
Cho hình thang ABCD có độ dài hai đáy AB=5cm và CD=15cm, độ dài hai đường chéo AC=16cm và BD=12cm. Từ A vẽ đường thẳng song song với BD, cắt CD tại E.
a/ Chứng minh tam giác ACE là tam giác vuông?
b/ Tính diện tích hình thang ABCD.
Cho hình thang ABCD ( AB song song CD ) và AB nhỏ hơn. Đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao BH
a) Chứng minh tam giác BDC và HBC đồng dạng
b) cho BC = 15 cm, CD = 4 cm. Tính HC, HD
c) Tính diện tích hình thang ABCD
Bài 1: Cho hình thang ABCD(AB//CD).Biết AB =2,5cm; AD =3,5cm; BD =5cm; và góc DAB= DBC.
a) Chứng minh hai tam giác ADB và BCD đồng dạng.
b) Tính độ dài các cạnh BC và CD.
c) Tính tỉ số diện tích hai tam giác ADB và BCD.
Bài 2:Cho hình thang ABCD(AB//CD) và AB<CD.Đường chéo BD vuông góc với cạnh bên BC.Vẽ đường cao BH.
a) Chứng minh hai tam giác BDC và HBC đồng dạng.
b) Cho BC= 15cm; DC= 25cm. Tính HC và HD?
c) Tính diện tích hình thang ABCD?
Bài 3: Cho tam giác ABC và các đường cao BD,CE.
a) Chứng minh: \(\Delta ABD\)đồng dạng với \(\Delta ACE\)
b) Tính \(\widehat{AED}\)biết \(\widehat{ACB}\)=480
Giải giúp mik với ạ
1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.
2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang
3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.
4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=5 cm. tính CD
5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=3cm. tính độ dài các cạnh BC,CD.
6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.
a) chứng minh ằng HD=KC.
7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.
a) tú giác BEDC là hình gì?Vì sao?
b)Chứng minh BE=ED=DC.
c) biết góc A=500. Tính các góc của tứ giác BEDC.
8. cho tam giác đều ABC, hai đường cao BN,CM
a) chứng minh tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC là hình thang cân
Cho hình thang ABCD (AB//CD)và AB < CD. Đường chéo BD vuoog góc với cạnh bên BC .Vẽ đường cao BH
a) Chứng minh hai tam giác BDC và HBC đồng dạng
b) Cho BC =15cm ,DC=25cm. Tính HC và HD.
c) Tính diện tích hình thang ABCD .