Xét \(2\Delta:\Delta APC\) và \(\Delta BQA\) có:
\(\left\{{}\begin{matrix}\widehat{APC}=\widehat{BQA}=90^o\\\widehat{BAQ}=\widehat{ACP}\left(slt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta APC\sim\Delta BQA\left(g-g\right)\)
Xét \(2\Delta:\Delta APC\) và \(\Delta BQA\) có:
\(\left\{{}\begin{matrix}\widehat{APC}=\widehat{BQA}=90^o\\\widehat{BAQ}=\widehat{ACP}\left(slt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta APC\sim\Delta BQA\left(g-g\right)\)
cho hình thang vuông ABCD (AB//CD) , góc A= góc D=1v) . Kẻ BE vuông góc với DC ( E thuộc DC) a) chứng minh tứ giác ABED là hình chữ nhật
b) tính diện tích hình thang ABCD , biết AB=12cm , DC = 18cm và diện tích hình chữ nhật ABED là 312 cm^2
Cho tam giác ABC cân tại A, D là 1 điểm chuyển động trên cạnh BC. Vẽ DM song song với AC,DN song song với AB (M thuộc AB, N thuộc AC).Gọi E,H,K,I theo thứ tự là trung điểm của BD,CD,MN,EH
Tứ giác DMAN là hình gì . Chứng minh
Chứng minh A,K,D thẳng hàng
Chứng minh tứ giác EMNH là hình thang vuông và KI vuông góc với BC
Khi D chuyển động trên BC thì K chuyển động trên đường nào
Ai giải giúp mình bài này với
Cho tam giác ABC vuông cân. M thuộc BC . Kẻ ME vuông góc với AB (E thuộcAB) , MF vuông góc với AC(F thuộc AC).
Chứng minh đường thẳng đi qua M vuông góc với EF luôn đi qua 1 điểm.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm BC. Qua M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với AC (F thuộc AC):
a) Chứng minh tứ giác AEMF là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua F. Tứ giác MANC là hình gì? Tại sao?
c) Tìm điều kiện của tam giác ABC để các tứ giác AEMF, MANC là hình vuông?
Cho hình thang ABCD, AB // CD. Gọi E, F và K lần lượt là trung điểm của BD, AC và CD. Gọi H là giao điểm của đường thẳng qua E vuông góc với AD và đường thẳng qua F vuông góc với BC. Chúng minh rằng:
a, H là trực tâm của tam giác EFK
b, Tam giác HCD cân
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC.( M khác B,C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE=CM.
a) Chứng minh: tam giác OEM vuông cân
b) Chứng minh ME song song BN
c) TừC kẻ CH vuông góc với BN( H thuộcBN). CMR 3 điểm O,M,H thẳng hàng
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
giải dum : cho hinh thang vuông ABCD có góc A=góc D= 90 độ , AB=AD= 1/2CD . Gọi E là trung điểm của CD
a) tứ giác ABCD là hình gì ? vì sao?
b) tứ giác ABED là hình gì ? vì sao?
c) gọi m là giao điểm của AC và BE , K là giao điểm của AE và DM, Ola2 giao điểm 2 đường chéo hình vuong ABED . Kẻ DH vuông góc với AC cắt AE tại i . Chứng minh BD là tia phân giác của góc IDK .
d) Chứng minh Bidk là hình thoi
1) Tứ giác ABCD có AB // CD, AB < CD, AD = BC. Chứng minh ABCD là hình thang cân
2) Tứ giác ABCD có góc A = góc B, BC = AD
a) Chứng minh ABCD là hình thang cân
b) Cho biết AC vuông góc vs BD và đường cao AH = 4cm. Tính AB + CD