Đáp án B
Thể tích khối tròn xoay cần tính là V = π ∫ 1 e f 2 x d x = π ∫ 1 e ln 2 x x d x
Đặt t = ln x ⇔ d t = d x x và x = 1 ⇒ t = 0 x = e ⇒ t = 1 . Khi đó ∫ 1 e ln 2 x x d x = ∫ 0 1 t 2 d t = t 3 3 0 1 = 1 3 . Vậy V = π 3
Đáp án B
Thể tích khối tròn xoay cần tính là V = π ∫ 1 e f 2 x d x = π ∫ 1 e ln 2 x x d x
Đặt t = ln x ⇔ d t = d x x và x = 1 ⇒ t = 0 x = e ⇒ t = 1 . Khi đó ∫ 1 e ln 2 x x d x = ∫ 0 1 t 2 d t = t 3 3 0 1 = 1 3 . Vậy V = π 3
Cho hình phẳng (D) giới hạn bởi các đường: y = x - π ; y = sinx ; x = 0 . Gọi V là thể tích khối tròn xoay tạo thành do (D) quay quanh trục hoành và V = p π 4 p ∈ ℚ . Giá trị của 24p bằng:
A. 8
B. 4
C. 24
D. 12
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y =sinx.cosx, trục tung, trục hoành và đường thẳng x =π/2 . Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox.
A. V =π/16.
B. V = π 2 16
C. V = π 2 + π 16
D. V = π 2 4
Cho hình phẳng (D) giới hạn bởi đường cong y = x 2 + 1 , trục hoành và hai đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay (D) xung quanh trục hoành có thể tích V bằng bao nhiêu
A. V = 4 π 3
B. V = 2 π
C. V = 2 π 3
D. V = π 3
Cho hình phẳng D giới hạn bởi đường cong y = 2 - sinx , trục hoành và các đường thẳng x=0, x = π 2 . Khối tròn xoay tạo thành D quay quanh trục hoành có thể tích V bằng:
A. π - 1 .
B. π 2 - 1 .
C. π ( π - 1 ) .
D. π 2 + 1 .
Cho hình phẳng (H) giới hạn bởi đường cong y = ln x , trục hoành, đường thẳng x = 1 và x = k k > 1 . Gọi V k là thể tích khối tròn xoay thu được khi quay hình (H) quay quanh trục Ox. Biết rằng V k = π . Hãy chọn khẳng định đúng?
A. 3 < k < 4
B. 1 < k < 2
C. 2 < k < 3
D. 4 < k < 5
Cho hình phẳng D giới hạn bởi đường cong y = 2 + cos x , trục hoành và các đường thẳng x = 0 , x = π 2 . Tính thể tích V của khối tròn xoay tạo thành khi quay D quanh trục hoành.
A. V = π - 1
B. V = π - 1 π
C. V = π + 1 π
D. V = π + 1
Cho hình phẳng (D) được giới hạn bởi các đường x = 0 , x = π , y = 0 và y = − sin x . Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. V = π ∫ 0 π sin x d x .
B. V = π ∫ 0 π sin 2 x d x .
C. V = π ∫ 0 π − sin x d x .
D. V = ∫ 0 π sin 2 x d x .
Hình phẳng (H) giới hạn bởi các đường y=sinx, y=cosx, x=0, x= π Thể tích vật thể tạo thành khi quay (H) quanh trục hoành Ox bằng
A. π ∫ 0 π cos 2 x dx
B. π ∫ 0 π sinx - cos x 2 dx
C. - π ∫ 0 π cos 2 xdx
D. ∫ 0 π cos - sin x 2 xdx
Gọi D là diện tích hình phẳng giới hạn bởi các đường y = sin 2 x , trục tung, trục hoành và đường thẳng x = π . Quay hình phẳng D quay trục Ox ta được khối tròn xoay có thể tích là
A. π 2 .
B. π 2 .
C. π 2 4 .
D. π 2 2 .