Tính thể tích V khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = tan x , x = 0 , x = π 6 xung quanh trục Ox.
Cho hình phẳng (H) giới hạn bởi các đường y= cos x, y=0, x=0, . Thể tích của khối tròn xoay được tạo thành khi quay (H) xung quanh trục Ox bằng
A. .
B. .
C.
D. .
Cho hình phẳng giới hạn bởi các đường y = tanx, y=0, x=0, x = π 4 quay xung quanh trục Ox . Thể tích của khối tròn xoay tạo thành bằng
A. 5.
B. .
C. .
D. .
Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = x , y = 0 và x = 4 quanh trục Ox. Đường thẳng x = a (0< a< 4 cắt đồ thị hàm số y = x tại M (hình vẽ). Gọi V1 là thể tích khối tròn xoay tạo thành khi quay tam giác OMH quanh trục Ox. Biết rằng V=2V1. Khi đó
A. .
B. .
C. .
D. .
Thể tích của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = tan x , x = 0 , x = π 3 và trục hoành bằng
Cho hình phẳng D giới hạn bởi đường cong y = 2 + sin x , trục hoành và các đường thẳng x = 0; x = π . Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu ?
Tính thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y=tanx; x=0; x = π 3 và trục hoành.
Cho hình phẳng (D) được giới hạn bởi các đường x=0; x = π ; y = 0 và y = -sinx. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
Cho hình phẳng giới hạn bởi các đường y=√x và y=x quay xung quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng:
(A). 0
(B). –π
(C). π
(D). π/6