Cho hình phẳng giới hạn bởi các đường y=√x và y=x quay xung quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng:
(A). 0
(B). –π
(C). π
(D). π/6
Tính thể tích V khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = tan x , x = 0 , x = π 6 xung quanh trục Ox.
Cho hình phẳng (D) được giới hạn bởi các đường x=0; x = π ; y = 0 và y = -sinx. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
Thể tích của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = tan x , x = 0 , x = π 3 và trục hoành bằng
Cho hình phẳng (H) giới hạn bởi các đường y= cos x, y=0, x=0, . Thể tích của khối tròn xoay được tạo thành khi quay (H) xung quanh trục Ox bằng
A. .
B. .
C.
D. .
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π /2 bằng:
A. 1; B. 2/7;
C. 2 π ; D. 2 π /3.
Cho hình phẳng (H) giới hạn bởi các đường y = tanx, y = 0; x = 0, x = π 4 . Khi đó thể tích V của khối tròn xoay tạo ra khi quay (H) quay quanh trục Ox bằng bao nhiêu?
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π/2 bằng:
A. 1; B. 2/7;
C. 2π; D. 2π/3.
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = xe x , y=0, x=0, x=1 xung quanh trục Ox là:
A.
B.
C.
D.