Sai vì thiết diện qua trục là tam giác vuông cân nghĩa là hai đường sinh tạo thành một mặt phẳng chứa SO mới vuông góc với nhau, còn hai đường sinh bất kì thì chưa chắc vuông góc
Sai vì thiết diện qua trục là tam giác vuông cân nghĩa là hai đường sinh tạo thành một mặt phẳng chứa SO mới vuông góc với nhau, còn hai đường sinh bất kì thì chưa chắc vuông góc
Cho hình nón có bán kính đường tròn đáy bằng a. Thiết diện qua trục hình nón là một tam giác cân có góc ở đáy bằng 45 ° Tính thể tích khối cầu ngoại tiếp hình nón
A. 1 3 π a 3
B. 8 3 π a 3
C. 4 3 π a 3
D. 4 π a 3
Một hình nón có bán kính đáy là R, góc giữa đường cao và một đường sinh là β . Biết rằng đường chéo thiết diện qua trục hình trụ thì song song với đường sinh hình nón. Thể tích của khối trụ nội tiếp hình nón bằng
A. 2 R 3 π 9 tan β
B. 4 R 3 π 27 tan β
C. 2 R 3 π 27 tan β
D. 2 R 3 π 3 tan β
Một hình nón có bán kính đáy là R, góc giữa đường cao và một đường sinh là β . Biết rằng đường chéo thiết diện qua trục hình trụ thì song song với đường sinh hình nón. Thể tích của khối trụ nội tiếp hình nón bằng
A. 2 R 3 π 9 tan β
B. 4 R 3 π 27 tan β
C. 2 R 3 π 27 tan β
D. 2 R 3 π 3 tan β
Cho hình nón (N) có đường sinh tạo với đáy một góc 60 ∘ . Mặt phẳng qua trục của (N) cắt (N) được thiết diện là một tam giác có bán kính đường tròn ngoại tiếp bằng 2. Thế tích V của khối nón (N).
A . V = 9 3 π
B . V = 3 π
C . V = 9 π
D . V = 3 3 π
Cho một khối nón có bán kính đáy là 9cm, góc giữa đường sinh và mặt đáy là 300. Tính diện tích thiết diện của khối nón cắt bởi mặt phẳng đi qua hai đường sinh vuông góc với nhau.
A. 162 c m 2
B. 27 c m 2
C. 27/2 c m 2
D. 54 c m 2
Cho hình nón có đường sinh tạo với đáy góc 60 ° Mặt phẳng đi qua trục của cắt theo một thiết diện có bán kính đường tròn ngoại tiếp bằng 2. Thể tích của khối nón là:
A. V = 3 3 π .
B. V = 3 π .
C. V = 9 π .
D. V = 9 3 π .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, hình chiếu vuông góc của đỉnh S trên đáy là trung điểm O của cạnh BC. Biết rằng AB=a, A C = a 3 , đường thẳng SA tạo với đáy một góc 60 ° . Một hình nón có đỉnh là S, đường tròn đáy ngoại tiếp tam giác ABC. Gọi l là độ dài đường sinh hình nón. Tính l
A. l = 2 a 3 3
B. l = a 3
C. l = a
D. l = 2a
Một khối nón có thiết diện qua trục là một tam giác vuông cân và đường sinh có độ dài bằng 3 cm2. Một mặt phẳng đi qua đỉnh và tạo với đáy một góc 600 chia khối nón thành hai phần. Tính thể tích phần nhỏ hơn (Tính gần đúng đến hàng phần trăm)
A. 4,36 cm3
B. 5,37 cm3
C. 5,61 cm3
D. 4,53 cm3
Cho hình trụ trục OO', đường tròn đáy (C) và (C'). Xét hình nón đỉnh O’, đáy (C) có đường sinh hợp với đáy góc a 0 o < a < 90 o . Cho biết tỉ số diện tích xung quanh của hình lăng trụ và hình nón bằng 3 . Tính giá trị a
A. 30 o
B. 45 o
C. 60 o
D. Kết quả khác