Cho hình nón (N) có đường sinh tạo với đáy một góc 60 0 . Mặt phẳng qua trục của (N) cắt (N) được thiết diện là một tam giác có bán kính đường tròn nội tiếp bằng 1. Tính thể tích V của khối nón giới hạn bởi (N).
Cắt hình nón (N) đỉnh S cho trước bởi mặt phẳng qua trục của nó, ta được một tam giác vuông cân có cạnh huyền bằng 2 a 2 . Biết BC là một dây cung đường tròn của đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng đáy của hình nón một góc 60 ° . Tính diện tích tam giác SBC.
Cho hình nón có bán kính đường tròn đáy bằng a. Thiết diện qua trục hình nón là một tam giác cân có góc ở đáy bằng 45 0 . Tính thể tích khối cầu ngoại tiếp hình nón.
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a √2
Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón góc 60 o .Tính diện tích tam giác SBC.
Cho một khối nón có bán kính đáy là 9cm, góc giữa đường sinh và mặt đáy là 30 0 . Tính diện tích thiết diện của khối nón cắt bởi mặt phẳng đi qua hai đường sinh vuông góc với nhau.
Cắt một khối nón tròn xoay có bán kính đáy bằng R, đường sinh 2R bởi một mặt phẳng ( α ) qua tâm đáy và tạo với mặt đáy một góc 60 ∘ tính tỷ số thể tích của hai phần khối nón chia bởi mặt phẳng ( α ) ?
Cắt một khối nón tròn xoay có bán kính đáy bằng R, đường sinh 2R bởi một mặt phẳng α qua tâm đáy và tạo với mặt đáy một góc 60 ° tính tỷ số thể tích của hai phần khối nón chia bởi mặt phẳng α ?
Cắt hình nón (N) bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là một tam giác đều cạnh 2a. Thể tích khối cầu ngoại tiếp hình nón (N) theo a là