Đáp án B
Từ giả thiết ta có thiết diện là tam giác đều cạnh 2r và đường cao h nên ta có:
Đáp án B
Từ giả thiết ta có thiết diện là tam giác đều cạnh 2r và đường cao h nên ta có:
Hình nón có thiết diện cắt bởi mặt phẳng qua trục là một tam giác vuông và có diện tích xung quanh là 2 . Độ dài đường cao của hình nón là:
A. 2
B. 1
C. 1/ 2
D. 2
Hình nón có góc ở đỉnh là 9 0 o và có diện tích xung quanh là π 2 . Độ dài đường cao của hình nón là:
A. 1
B. 2
C. 1/ 2
D. 2
Cho một hình nón với thiết diện qua trục là một tam giác đều cạnh 2a có diện tích xung quanh là S 1 và một mặt cầu có đường kính bằng chiều cao hình nón có diện tích là S 2 . Khi đó, hệ thức giữa S 1 và S 2 là:
A. S 1 = S 2 B. S 1 = 4 S 2
C. S 2 = 2 S 1 D. 2 S 2 = 3 S 1
Cắt hình nón bởi một mặt phẳng qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng 2a. Tính diện tích xung quanh của hình nón đó
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
Một hình nón tròn xoay mà thiết diện tạo bởi mặt phẳng chứa trục hình nón với hình nón là một tam giác vuông cân có diện tích bằng 4 a 2 (a>2). Tính diện tích xung quanh S x q của hình nón
Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều cạnh 2a. Tính diện tích xung quanh và thể tích của hình nón đó.
Một hình nón có đường kính đáy là 2a π 3, góc ở đỉnh 120 ° . Thể tích của khối nón đó theo a là:
A. 2 3 π a 3 B. 3 π a 3
C. π a 3 D. π a 3 3
Cho hình nón tròn xoay có đường cao h=40 (cm), bán kính đáy r=50 (cm). Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 24 (cm). Tính diện tích của thiết diện
A. S = 800 cm 2
B. S = 1200 cm 2
C. S = 1600 cm 2
D. S = 2000 cm 2