Một hình nón có bán kính đáy là R, góc giữa đường cao và một đường sinh là β . Biết rằng đường chéo thiết diện qua trục hình trụ thì song song với đường sinh hình nón. Thể tích của khối trụ nội tiếp hình nón bằng.
A. 2 R 3 π 9 tan β
B. 4 R 3 π 27 tan β
C. 2 R 3 π 27 tan β
D. 2 R 3 π 3 tan β
Cho hình nón có chiều cao bằng 2 và đường sinh hợp với trục một góc bằng 45 O . Diện tích xung quanh của hình nón là:
A. 4 3 π
B. 2 π
C. 3 π
D. 4 2 π
Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng a 2 và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh S xq của hình nón và thể tích V của khối nón tương ứng là:
A. S xq = πa 2 ; V = πa 3 6 12
B. S xq = πa 2 2 ; V = πa 3 3 12
C. S xq = πa 2 2 ; V = πa 3 6 4
D. S xq = πa 2 ; V = πa 3 6 4
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng α . Gọi I là một điểm trên đường cao DO của hình nón sao cho DI DO = k (0 < k < 1) . Tính diện tích thiết diện qua I và vuông góc với trục của hình nón.
Cho khối nón có chiều cao bằng a và thể tích bằng 4 πa 3 3 độ dài đường sinh của hình nón bằng
Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng 60°. Thể tích của khối nón đã cho là
Một hình nón có đường sinh bằng a 2 và góc giữa đường sinh và mặt phẳng đáy bằng 60 ° . Tính thể tích của khối nón được tạo nên từ hình nón đó.
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng α . Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên.
II. Tự luận ( 4 điểm)
Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng a 2 và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh S x q của hình nón và thể tích V của khối nón tương ứng là: