a) AD, A’D’, BC, B’C’, AA’, BB’, CC’, DD’
b) BD, B’D’, AA’, BB’, CC’, DD’
a) AD, A’D’, BC, B’C’, AA’, BB’, CC’, DD’
b) BD, B’D’, AA’, BB’, CC’, DD’
Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Chứng minh rằng đường thẳng AC’ vuông góc với mặt phẳng (A’BD) và mặt phẳng (ACC’A’) vuông góc với mặt phẳng (A’BD).
b) Tính đường chéo AC’ của hình lập phương đã cho.
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai đường thẳng AC và C’D’ bằng:
A. 0 o
B. 45 o
C. 60 o
D. 90 o
Cho hình lập phương ABCD.A’B’C’D’ Góc giữa hai đường thẳng BA' và CD bằng:
A. 450
B.600
C. 300
D. 900
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai đường thẳng BA’ và CD bằng
A. 90⁰.
B. 30⁰.
C. 60⁰.
D. 45⁰.
Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa các cặp đường thẳng sau đây:
a) AB và B’C’
b) AC và B’C’
c) A’C’ và B’C
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và AC’ là
A. 3 a
B. a
A. 3 2 a
A. 2 a
Cho hình lập phương ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AA’ và CD. Góc giữa hai đường thẳng BM và C’N bằng:
A. 45 0
B. 30 0
C. 60 0
D. 90 0
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.
b) Tính khoảng cách của hai đường thẳng BD' và B'C
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’ (tham khảo hình vẽ bên).
Khoảng cách giữa hai đường thẳng MN và B’D’ bằng
A. 5 a
B. 5 a 5
C. 3a.
D. a 3