Cho hình lập phương ABCD.A'B'C'D' cạnh a. Các điểm M, N, P lần lượt thuộc các đường thẳng A A ' , B B ' , C C ' thỏa mãn diện tích của tam giác MNP bằng a 2 . Góc giữa hai mặt phẳng (MNP) và (ABCD) là
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Một đường thẳng d đi qua đỉnh D¢ và tâm I của mặt bên BCC'B'. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC'B') và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là
Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. M là trung điểm CC'. Tính góc giữa hai đường thẳng AD' và BM
A. 45 o
B. 18 o 26 '
C. 26 o 33 '
D. 18 o 43 '
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a, gọi α là góc giữa đường thẳng A ' B và mặt phẳng B B ' D ' D . Tính sin α
A. 3 5
B. 3 2
C. 1 2
D. 3 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và mặt phẳng (SBD) tạo với mặt phẳng (ABCD) một góc bằng 60 o . Gọi M là trung điểm của AD. Tính khoảng cách giữa hai đường thẳng SC và BM
A. 2 a 11
B. 6 a 11
C. a 11
D. 3 a 11
Cho hình lập phương ABCD.A'B'C'D' có cạnh bên bằng a (tham khảo hình vẽ bên). Gọi α là góc giữa đường thẳng A'C và mặt phẳng (A'B'C'D') thì:
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD'. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
A. 3 a
B. 3 a 2
C. 3 a 3
D. 3 a 6
Cho hình hộp ABCD.A'B'C'D' có thể tích bằng 1. Gọi M là điểm thỏa mãn B M → = 2 3 B B ' → và N là trung điểm của DD’. Mặt phẳng (AMN) chia hình hộp thành hai phần, thể tích phần có chứa điểm A’ bằng
Cho hình chóp tứ giác đều S . A B C D có tất cả các cạnh bằng a. Gọi M là trung điểm SD (tham khảo hình vẽ bên) Tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng
A. 2 2
B. 3 3
C. 2 3
D. 1 3