Cho hình chóp S.ABCD có đáy ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ ( A B C D ) . Hai điểm M và N lần lượt thay đổi trên hai cạnh CB và CD, đặt CM=x, CN=y, . Xác định hệ thức liên hệ giữa x và y để hai mặt phẳng (SAM) và (SAN) vuông góc với nhau.
Cho hình chóp S.ABCD có đáy ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ ( A B C D ) . Hai điểm M và N lần lượt thay đổi trên hai cạnh CB và CD, đặt CM=x, CN=y, . Xác định hệ thức liên hệ giữa x và y để hai mặt phẳng (SAM) và (SAN) vuông góc với nhau.
Cho hình lập phương ABCD. A’B’C’D’ cạnh bằng a. Gọi K là trung điểm DD'. Tính khoảng cách giữa hai đường thẳng CK và A’D.
A. 4 a 3
B. a 3
C. 2 a 3
D. 3 a 4
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, S A ⊥ A B C D và S A = a 3 . Gọi α là góc tạo bởi giữa đường thẳng SB và mặt phẳng (SAC), khi đó α thỏa mãn hệ thức nào sau đây
A. cos α = 2 8
B. sin α = 2 8
C. sin α = 2 4
D. cos α = 2 4
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SD, CD, BC. Thể tích khối chóp S.ABPN là x, thể tích khối tứ diện CMNP là y. Giá trị của x,y thỏa mãn các bất đẳng thức nào dưới đây?
A . x 2 + 2 x y - y 2 > 160
B . x 2 - 2 x y + 2 y 2 < 109
C . x 2 + x y - y 4 < 145
D . x 2 - x y + y 4 > 125
Cho hình lập phương ABCD.A'B'C'D'. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, C'D'. Xác định góc giữa hai đường thẳng MN và AP
A. 60 0
B. 90 0
C. 30 0
D. 45 0
Cho hình hộp ABCD. A’B’C’D’ có tất cả các mặt đều là hình vuông cạnh a. Các điểm M; N lần lượt trên AD’ và BD sao cho AM= DN= x. Khi x = a 2 3 thì MN song song với đường thẳng nào?
A. A’C
B. AC
C. B’A
D. Đáp án khác
Cho hình chóp S ABCD . có đáy ABCD là hình vuông tâm O , cạnh bằng, 2a . SA vuông góc với mặt đáy và SA =a .
a) Chứng minh: BD vg (SAC) .
b) Gọi N là trung điểm của CD . Xác định và tính góc giữa đường thẳng SN với mặt phẳng (SBD).
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.
a) Chứng minh rằng AM song song với A’M’.
b) Tìm giao điểm của mặt phẳng (A’B’C’) với đường thẳng A’M.
c) Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (BA’C’).
d) Tìm giao điểm G của đường thẳng d với mp(AMA’). Chứng minh G là trọng tâm của tam giác AB’C’.