Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông, BA=BC=a, cạnh bên A A ' = a 2 , M là trung điểm của BC. Khoảng cách giữa hai đường thẳng AM và B’C bằng
A. a 2 2
B. a 3 3
C. a 5 5
D. a 7 7
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.
a) Chứng minh rằng AM song song với A’M’.
b) Tìm giao điểm của mặt phẳng (A’B’C’) với đường thẳng A’M.
c) Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (BA’C’).
d) Tìm giao điểm G của đường thẳng d với mp(AMA’). Chứng minh G là trọng tâm của tam giác AB’C’.
Cho hình lăng trụ đứng ABC.A’B’C’có đáy là tam giác vuông và AB=BC=a, AA'= a 2 . Gọi M là trung điểm của BC. Tính khoảng cách d của hai đường thẳng AM và B’C
Cho hình lăng trụ đứng ABC. A’B’C’ có đáy là ABC là tam giác vuông BA = BC =a, cạnh bên A A ' = a 2 .Gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM, B’C’.
Cho hình lăng trụ đứng ABC.A’B’C’ có AB=1,AC=2,AA'=3 và BAC= 120 o Gọi M, N lần lượt là các điểm trên cạnh BB’, CC’ sao cho BM=3B'M;CN=2C'N Tính khoảng cách từ điểm M đến mặt phẳng (A'BN)
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác ABC đều cạnh a . Gọi I là trung điểm AB , hình chiếu của điểm A' lên (ABC ) là trung điểm H của đoạn CI , góc giữa đường thẳng AA' và mặt phẳng (ABC ) bằng 45 độ. Tính khoảng cách giữa hai đường thẳng chéo nhau A A' và CI
Cho hình lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh a Gọi D,E,F lần lượt là trung điểm của các cạnh BC, A'C' , C'B' Tính khoảng cách giữa hai đường thẳng DE và AB'.
Cho hình lăng trụ ABC.A’B’C’ đáy là tam giác đều tâm O, C’O vuông góc với (ABC). Khoảng cách từ O tới đường thẳng CC’ bằng a. Góc tạo bởi mặt phẳng (AA’C’C) và mp(BB’C’C) bằng 120 o . Gọi góc giữa cạnh bên và đáy của lẳng trụ là φ thì.
A. tan φ = 2 4
B. cos φ = 3 4
C. si n φ = 1 3
D. c o t φ = 2 2
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’ (tham khảo hình vẽ bên).
Khoảng cách giữa hai đường thẳng MN và B’D’ bằng
A. 5 a
B. 5 a 5
C. 3a.
D. a 3