Cho khối lăng trụ tam giác A B C . A ' B ' C ' . Gọi M, N lần lượt là trung điểm của BB' và CC'. Mặt phẳng (A'MN) chia khối lăng trụ thành hai khối đa diện. Gọi V 1 là thể tích của khối đa thức diện chứa đỉnh B và V 2 là thể tích khôi đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N lần lượt là trung điểm của BB’, CC’. Mặt phẳng (A’MN) chia khối lăng trụ thành hai phần, V 1 là thể tích của phần đa diện chứa điểm B, V 2 là phần đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2
Cho khối lăng trụ ABC.A′B′C′ có thể tích V, đáy là tam giác cân, AB = AC. Gọi E là trung điểm cạnh AB và F là hình chiếu vuông góc của E lên BC. Mặt phẳng (C′EF) chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích của khối đa diện chứa đỉnh A.
A. 47 72 V
B. 25 72 V
C. 29 72 V
D. 43 72 V
Cho lăng trụ tam giác đều ABC.A’B’C’. Trên A’B, kéo dài lấy điểm M sao cho B’M = 1 2 A’B’. Gọi N, P lần lượt là trung điểm của A’C’ và B’B. Mặt phẳng (MNP) chia khối lăng trụ ABC.A’B’C’ thành hai khối đa diện trong đó khối đa diện chứa đỉnh A’ có thể tích V1 và khối đa diện chứa đỉnh C’ có thể tích V2 . Tính V 1 V 2
A. V 1 V 2 = 97 59
B. V 1 V 2 = 49 144
C. V 1 V 2 = 95 144
D. V 1 V 2 = 49 95
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M,N lần lượt là trung điểm của BB',CC'. Mặt phẳng (A'MN) chia khối lăng trụ thành hai phần, V 1 là thể tích của phần đa diện chứa điểm B , V 2 thể tích phần đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2
Cho lăng trụ tam giác đều A B C . A ' B ' C ' . Trên A ' B ' kéo dài lấy điểm M sao cho B ' M = 1 2 A ' B . Gọi N, P lần lượt là trung điểm của A ' C ' và B ' B ' . Mặt phàng (MNP) chia khối lăng trụ A B C . A ' B ' C ' thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A ' có thể tích V 1 , khối đa diện chứa đỉnh C ' có thể tích V 2 . Tỉ số V 1 V 2 là:
A. V 1 V 2 = 49 95
B. V 1 V 2 = 49 144
C. V 1 V 2 = 95 144
D. V 1 V 2 = 97 59
Cho hình lăng trụ ABC.A’B’C’, trên các cạnh AA’, BB’ lấy các điểm M, N sao cho AA'=4A'M , BB'=4B'N Mặt phẳng (C'MN) chia khối lăng trụ thành hai phần. Gọi V 1 là thể tích khối chóp C’.A’B’MN và V 2 là thể tích khối đa diện ABCMNC’. Tính tỷ số V 1 V 2
A. V 1 V 2 = 1 5
B. V 1 V 2 = 4 5
C. V 1 V 2 = 2 5
D. V 1 V 2 = 3 5
Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Cho khối lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a, cạnh bên bằng 3 a . M là trung điểm cạnh A'B', N là điểm trên tia đối của tia C'A' sao choA’C’=2NC. Mặt phẳng (AMN) chia khối lăng trụ thành hai khối đa diện. Thể tích khối đa diện chứa đỉnh A' bằng
A. 17 a 3 96
B. 55 a 3 96
C. 15 a 3 32
D. 9 a 3 32