Cho khối lăng trụ tam giác ABC.A'B'C' có thể tích là V. Gọi I, J lần lượt là trung điểm hai cạnh AA' và BB'. Khi đó thể tích của khối đa diện ABCIJC' bằng.
Cho khối lăng trụ tam giác ABC.A'B'C' có thể tích là V. Gọi I, J lần lượt là trung điểm hai cạnh AA' và BB'. Khi đó thể tích của khối đa diện ABCIJC' bằng.
Cho khối lăng trụ tam giác ABC. A'B'C'. Gọi M, N lần lượt là trung điểm của BB' và CC'. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Gọi V₁ là thể tích của khối đa diện chứa đỉnh B' và V₂ là thể tích khối đa diện còn lại. Tính tỉ số V₁/V₂.
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 1 3
D. V 1 V 2 = 5 2
Cho hình lăng trụ đứng ABC.A’B’C’. Gọi M là trung điểm A’C’, I là giao điểm của AM và A'C. Khi đó tỉ số thể tích của khối tứ diện IABC với khối lăng trụ đã cho bằng:
A. 2 3
B. 2 9
C. 4 9
D. 1 2
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M là trung điểm cạnh B B ' , điểm N thuộc cạnh CC' sao cho C N = 2 C ' N . Tính thể tích khối chóp A.BCNM theo V
Cho hình lăng trụ đứng ABC.A’B’C’ có A B = 1 , A C = 2 , B A C ^ = 120 0 . Giả sử D là trung điểm của cạnh CC’ và B D A ' ^ = 90 0 . Tính thể tích V của khối lăng trụ ABC.A’B’C’
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18
Cho hình lăng trụ A B C . A ' B ' C ' có thể tích bằng a 3 . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC . Tính thể tích V của khối tứ diện GMNP.