Cho hình lăng trụ ABCA'B'C' có thể tích bằng α 3 . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC. Thể tích của khối tứ diện GMNP bằng
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a, AC = a 3 . Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng (ABC) bằng 60 ∘ . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính V 3 + V a 3 - 1 .
A. 1.
B. a.
C. a 2 .
D. a 3 .
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a. Mặt bên ABB’A’ có diện tích bằng a 2 3 . Gọi M; N lần lượt là trung điểm của A’B; A’C . Tính tỉ số thể tích của hai khối chóp A’. AMN và A’.ABC.
A. 1 2
B. 1 3
C. 1 4
D. 1 5
Cho hình lăng trụ tam giác ABC. A'B'C' có BB' = a, góc giữa đường thẳn BB' và mặt phẳng (ABC) bằng 60 o , tam giác ABC vuông tại C và B A C ^ = 60 o . Hình chiếu vuông góc của điểm B' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Thể tích của khối tứ diện A'.ABC tính theo a bằng
Cho khối tứ diện ABCD có thể tích 2017. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
A. 2017 9
B. 4034 81
C. 8068 27
D. 2017 27
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân có C A = C B = a . Gọi G là trọng tâm tam giác ABC. Biết thể tích của khối chóp G.A'B'C' bằng a 3 3 . Tính chiều cao h của hình lăng trụ đã cho.
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, BC=a 3 góc hợp bởi đường thẳng AA' và mặt phẳng (A'B'C') bằng 45 0 , hình chiếu vuông góc của B' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a√3/4. Tính thể tích V của khối lăng trụ ABC.A'B'C'
A. V = a 3 3 6
B. V = a 3 3 3
C. V = a 3 3 24
D. V = a 3 3 12