Cho hình hộp ABCD.A’B’C’D’. Trên các cạnh AA’, BB’, CC’ lần lượt lấy ba điểm M, N, P sao cho Biết mặt phẳng (MNP) cắt cạnh DD’ tại Q. Tính tỉ số D ' Q D D '
A. 1 6
B. 1 3
C. 5 6
D. 2 3
Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.
a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP).
b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì?
c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.
Cho hình lập phương ABCD.A′B′C′D′ có độ dài cạnh bằng 3. Một mặt phẳng (α) đồng thời cắt các cạnh AA′,BB′,CC′,DD′ lần lượt tại các điểm M,N,P,Q. Diện tích tứ giác MNPQ bằng 18. Góc giữa (α) và mặt phẳng đáy bằng
Cho khối hộp chữ nhật ABCD.A'B'C'D' có thể tích bằng 2018. Biết M, N, P lần lượt nằm trên các cạnh AA', BB', CC' sao cho Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB =4, AD = 5, AA' =6. Gọi M, N, P lần lượt là trung điểm các cạnh A'D', C'D' và DD' (tham khảo hình vẽ bên). Côsin góc giữa hai mặt phẳng (AB'D') và (MNP) bằng
A. 181 469
B. 120 13 469
C. 19 469
D. 60 61 469
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, SD và BC. Gọi E là giao điểm của mặt phẳng (MNP) với cạnh SA. Tính tỉ số SE SA . A. 1 4 . B. 1 2 . C. 1 3 . D. 3
Cho hình lăng trụ đứng ABC.A’B’C’ có AB=1,AC=2,AA'=3 và BAC= 120 o Gọi M, N lần lượt là các điểm trên cạnh BB’, CC’ sao cho BM=3B'M;CN=2C'N Tính khoảng cách từ điểm M đến mặt phẳng (A'BN)
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=4 AD =5 AA'=6 . Gọi M , N , P lần luợt là trung điểm các cạnh A'D', C'D' và DD' (tham khảo hình vẽ bên). Côsin góc giữa hai mặt phẳng (AB'D') và bằng (MNP)
A. 181 469
B. 120 13 469
C. 19 469
D. 60 61 469
Cho hình lăng trụ tam giác ABC.A'B'C' có độ dài cạnh bên bằng a. Trên các cạnh bên AA', BB', CC' ta lấy tương ứng các điểm M, N, P sao cho AM + BN + CP = a
Chứng minh rằng mặt phẳng (MNP) luôn luôn đi qua một điểm cố định.