Trong mặt phẳng ( α ) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ( α ) ta lấy một điểm S tùy ý, dựng mặt phẳng ( β ) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng ( β ) cắt SB, SC, SD lần lượt tại B’ , C’, D’. Chứng minh rằng các điểm A, B, C, D, B’, C’ , D’ luôn luôn thuộc một mặt cầu cố định.
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = -9
D. 6
Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với đáy, SA = AC. Mặt phẳng qua A vuông góc với SC cắt SB, SC, SD lần lượt tại B', C', D'. Tỉ số giữa thể tích hình chóp S.A'B'C'D' và thể tích hình chóp S.ABCD là:
A. 1/6 B. 1/4
C. 1/3 D. 1/2
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho SA' = SA/3. Mặt phẳng qua A' và song song với đáy của hình chóp cắt cạnh SB, SC, SD lần lượt tại B', C', D'. Thể tích hình chóp S.A'B'C'D' bằng:
A. V/3 B. V/9
C. V/27 D. V/81.
Trong không gian Oxyz, cho điểm A(1;0;2), B(−2;0;5), C(0;−1;7). Trên đường thẳng d vuông góc với mặt phẳng (ABC) tại A lấy một điểm S. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Biết khi S di động trên d (S ≠ A) thì đường thẳng HK luôn đi qua một điểm cố định D. Tính độ dài đoạn thẳng AD.
A. AD = 3 3
B. AD = 6 2
C. AD = 3 6
D. AD = 6 3
Trong không gian Oxyz, cho mặt phẳng phẳng (P): x-2y+2x-1=0 và đường thẳng d: x - 1 1 = y + 1 2 = z - 1 . Biết điểm A(a;b;c) là điểm nằm trên đường thẳng d và cách (P) một khoảng bằng 1. Tính tổng S = a+b+c
A. S = 2
B. S = - 2 5
C. S = 4
D. S = 12 5
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, SA vuông góc với mặt phẳng đáy, SA=BD=a√3. Góc giữa đường thẳng SC và mặt phẳng đáy (ABCD) bằng
A. 60° B. 30° C.90° D.45°
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng P : x - 2 y + 2 z - 5 = 0 . Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = 1 ; b ; c khi đó b c bằng
Trong hệ trục tọa độ Oxyz cho điểm A(4;0;0), B(0;4;0), S(0;0;c) và đường thẳng d: x - 1 1 = y - 1 1 = z - 1 2 . Gọi A', B' lần lượt là hình chiếu vuông góc của O lên SA,SB. Khi góc giữa đường thẳng d và mặt phẳng (OA'B') là lớn nhất, mệnh đề nào sau đây là đúng?
Trong mặt phẳng ( α ) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ( α ) ta lấy một điểm S tùy ý, dựng mặt phẳng ( β ) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng ( β ) cắt SB, SC, SD lần lượt tại B’ , C’, D’. Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành.