Cho hình hộp chữ nhật A B C D . A ' B ' C ' D ' có A B = 3 a , A D = 4 a , A A ' = 4 a . Gọi G là trọng tâm tam giác CC 'D . Mặt phẳng chứa B'G và song song với C 'D chia khối hộp thành 2 phần. Gọi (H) là khối đa diện chứa C . Tính tỉ số V H V với V là thể tích khối hộp đã cho.
A. 19 54
B. 38 3
C. 23 4
D. 25 2
Cho hình hộp A B C D . A ' B ' C ' D ' . Gọi M, N, P lần lượt là trung điểm của A A ' , B C , C D . Mặt phẳng M N P chia khối hộp thành hai phần có thể tích là V 1 , V 2 . Gọi V 1 là thể tích phần chứa điểm C. Tỉ số V 1 V 2 bằng
A. 119 25
B. 3 4
C. 113 24
D. 119 425
Cho lăng trụ tam giác ABC.A′B′C′. Gọi M,N,P lần lượt là trung điểm các cạnh A′B′,BC,CC′. Mặt phẳng (MNP) chia khối lăng trụ thành hai phần, phần chưa điểm B có thể tích là V 1 . Gọi V là thể tích khối lăng trụ. Tính V 1 V .
A. 25 288
B. 29 144
C. 37 288
D. 19 144
Cho hình hộp A B C D . A ' B ' C ' D ' có thể tích bằng 1. Gọi M là điểm thỏa mãn B M → = 2 3 B B ' → và N là trung điểm của DD’. Mặt phẳng (AMN) chia hình hộp thành hai phần, thể tích phần có chứa điểm A’ bằng
A. 67 144
B. 4 9
C. 3 8
D. 181 432
Cho khối hộp A B C D . A 1 B 1 C 1 D 1 . Gọi M là trung điểm của AB. Mặt phẳng M A 1 C 1 chia khối hộp đã cho thành hai phần. Gọi V 1 là thể tích khối đa diện có chứa B B 1 và V 2 là thể tích phần còn lại. Tính tỉ số V 1 V 2 .
A. 7 24
B. 1 3
C. 17 7
D. 1 4
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho hình chóp tứ giá đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 ° . Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng:
A. 7 5
B. 1 7
C. 7 3
D. 6 5
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có thể tích là V. Gọi M là một điểm trên cạnh AB sao cho M A A B = x , 0 < x < 1 . Biết rằng mặt phẳng α qua M và song song với (SBC) chia khối chóp S.ABCD thành hai phần trong đó phần chứa điểm A thể tích bằng 4 27 V . Tính giá trị của biểu thức P = 1 − x 1 + x
A. 1/2
B. 1/5
C. 1/3
D. 3/5