Ta có: AE+EB=AB
=>\(EB=AB-AE=AB-\frac23\times AB=\frac13\times AB\)
mà AB=CD
nên \(EB=\frac13\times CD\)
ΔEBC vuông tại B
=>\(S_{BEC}=\frac12\times BE\times BC=\frac12\times\frac13\times AB\times BC=\frac16\times S_{ABCD}\)
Vì EB//DC
nên \(\frac{HE}{HC}=\frac{EB}{DC}=\frac13\)
=>HC=3xHE
Ta có: HC+HE=EC
=>EC=HE+3xHE=4xHE
=>\(EH=\frac14\times EC\)
=>\(S_{EHB}=\frac14\times S_{EBC}=\frac14\times\frac16\times S_{ABCD}=\frac{1}{24}\times S_{ABCD}\)
DF=FC
=>F là trung điểm của DC
=>\(DF=FC=\frac12\times DC\)
ΔADF vuông tại D
=>\(S_{ADF}=\frac12\times DA\times DF=\frac12\times DA\times\frac12\times DC=\frac14\times S_{ABCD}\)
Vì AB//CD
nên \(\frac{GA}{GF}=\frac{AB}{DF}=2\)
=>GA=2GF
Ta có: GA+GF=AF
=>AF=2GF+GF=3GF
=>\(S_{ADF}=3\times S_{GDF}\)
=>\(S_{GDF}=\frac13\times S_{ADF}=\frac13\times\frac14\times S_{ABCD}=\frac{1}{12}\times S_{ABCD}\)
Ta có: \(S_{GDF}+S_{HEB}=7\)
=>\(\frac{1}{24}\times S_{ABCD}+\frac{1}{12}\times S_{ABCD}=7\)
=>\(\frac{3}{24}\times S_{ABCD}=7\)
=>\(\frac{S_{ABCD}}{8}=7\)
=>\(S_{ABCD}=8\times7=56\left(\operatorname{cm}^2\right)\)
