Cho hình chữ nhật ABCD. Kẻ BK ⊥ AC. Gọi M, N lần lượt là trung điểm của AK và CD. Tìm mệnh đề đúng
A. Góc BMN là góc nhọn
B. Góc BMN là góc vuông
C. NB và AC vuông góc với nhau
D. Góc BNM là góc vuông
Cho hình chữ nhật ABCD. Kẻ BK vuông góc với AC. Gọi M , N lần lượt là trung điểm AK và CĐ . Biết B(1;2), N(-3;0) . Viết phương trình đường tròn ngoại tiếp tam giác BM
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD trên đoạn AC lấy M sao cho AC=4AM và N là trung điểm cạnh CD
CMR: Tam giác BMN là tam giác vuông cân
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu
Cho hình vuông ABCD, M thuộc AC sao cho AM=1/4AC., N là trung điểm DC.cmr tam giac BMN vuông cân (cm theo vecto)
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?
Cho hình bình hành ABCD. Gọi M, N là các điểm nằm trên các cạnh AB và CD sao cho AM = AB, CN = CD. Gọi G là trọng tâm của tam giác BMN. Hãy phân tích theo hai vecto .
Cho hình chữ nhật ABCD có AB = 2, AD = 4, điểm M thuộc cạnh BC thỏa mãn BM = 1. Điểm N thuộc đường chéo AC thỏa mãn A N → = x A C → . Giá trị của x để tam giác AMN vuông tại M là
A. 5/8
B. 5/4
C. 5/16
D. 0, 5
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?