Cho hình chữ nhật ABCD. Gọi F là trung điểm của AB lấy M trên đường phân giác của góc C . Dựng MQ vuông góc với BC tại Q. Chứng minh nếu MF vuông góc với DQ thì AM=BC
cho hình chữ nhật ABCD.gọi f là trung điểm của AB. lấy điểm M trên đường phân giác trong của góc C. Dựng MQ vuông góc với BC tại Q. Chứng minh nếu MF vuông góc với DQ thì AM=BC
cho hình chứ nhật ABCD . gọi F là trung điểm xủa AB , lấy M trên đương phân giác góc C . dựng MQ vuông góc với BC tại Q . CMR : MF vuông góc với DQ thì AM = BC .
Cho (o) đường kính BC ,lấy A thuốc (o) . Kẻ AH vuông góc với BC tại H , HÊ vuống góc với AB tại E , HF vuống góc với AV tại F . Gọi i là trung điểm của HC
a, Chứng minh tứ giác AEHF là hình chữ nhật
b, AE .AB = AF .AC
c, tính số đo góc BAC
d, C/m EF là tiếp tuyến của đường tròn ngoại tiếp tam giác HFC
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Cho tam giác ABC vuông tại A , đường cao AH vuông góc với BC tại H. Gọi E,F lần lượt là hình chiếu của H trên AB và AC. Gọi M là trung điểm của BC, kẻ AM cắt EF tại K. Cm : a, tứ giác AEHF là hình chữ nhật. B, AE×AB= AF×AC. C AM vuông góc EF tại K .
Giúp mk câu B,C với ạ 💖
Cho tam giác ABC vuông tại A . Gọi M là trung điểm của BC . Từ M , kẻ ME , MF lần lượt vuông góc với AB , AC
a) Chứng minh tứ giác AEMF là hình chữ nhật
b) Gọi O là giao điểm của AM và EF ; K là điểm đối xứng với M qua AC . Chứng minh 3 điểm B , O , K thẳng hàng
c) Tìm điều kiện của tam giác ABC để tứ giác ABCK là hình thang cân . Khi đó nếu AM = 5cm , hãy tính diện tích của tam giác ABC
cho hình chữ nhật ABCD có AB=BC√2. gọi M là một điểm trên cạnh CD. kẻ KI vuông góc với AM tại I. gọi giao điểm của CI và DI với AB lần lượt là E và F. chứng minh rằng AE, BF, AB là độ dài 3 cạnh của một tam giác vuông
Cho tam giác ABC vuông tại A , đường cao AH , M là điểm bất kì trên BC , ME vuông góc với AC , MF vuông góc với AB . Chứng minh rằng AH . AM^2 = AE . AF . BC thì M trùng với H hoặc M là trung điểm BC